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Differential diffusion

* The turbulent mixing of two or more scalars is encountered in a variety of
engineering and environmental applications

 When the molecular diffusivity of the scalars is different, the scalars evolve
differently even if they are initially perfectly correlated

—> This process is known as differential diffusion

Differential diffusion is analyzed in the context of
1) Jet flows = turbulent/non-turbulent interface

2) Homogeneous forced turbulence - inter-scale transfer




DNS of turbulent jet flow

e Direct numerical simulation of temporally evolving plane jet flow

e Periodicin x and y directions

» 6t order implicit finite difference scheme for spatial derivatives

* 4t order low storage Runge-Kutta scheme for temporal integration

e Pressure treatment: fractional step method with Helmholtz equation for pseudo pressure
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e G@Grid size is 2816 x 2816 x 1500
* Initial jet Reynolds number is 9000

* Two passive scalars with
e Sc=1and
e Sc=0.25




Turbulent jet flow: turbulent/non-turbulent interface

* Free turbulent jet flows are characterized by a
turbulent/non-turbulent interface that separates the fully
developed turbulent core from the irrotational outer flow

Turbulent/non-turbulent interface

Fully developed
turbulent core Irrotational outer-flow

—> Large local gradients across the TNTI: Diffusive effects become important




Differential diffusion parameter

The mixture field of two initially correlated passive scalars depart from each other when the
Schmidt number is different

e Differential diffusion parameter Zis introduced for quantification
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Turbulent/non-turbulent interface
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* Introduce new interface dependent coordinate:
* Define interface based on threshold of vorticity w or scalar ¢
* The interface defined by both criteria is virtually the same

6 M. Gampert et al., J. Fluid Mech. (2014)




Detection of the turbulent/non-turbulent interface

Steep
0.3 gradientat
the interface
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* Conditional average reveals steep gradient at the turbulent/non-turbulent interface
e ->Interface position is not sensitive with respect to the threshold




Differential diffusion: decorrelation at the interface
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e Conditional average reveals steep gradient at the interface
« Joint pdf P(¢1, ¢2; z/) shows decorrelation of the two scalars at the interface




Differential diffusion: scalar dissipation

(a) 22
-25 20 -15 -10 -0.5 0
0.020 f 2 I A R 1 0.020
— ¢
= - ¢
7 0.015 1 | conditional 10.015
| : . average P
N R, 3
~ 0.010 | I} 10.010 >3
g |
0.005 } 1 0.005
0 : 0
-0.25 0.50 075

& — k]

e Conditional scalar dissipation reveals peak in the vicinity of the interface, which is not
seen by conventional averaging



Differential diffusion: gradient production at the interface
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* Transport equation for square of scalar gradient g2 x x/D
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Direct numerical simulations in a periodic box

* Three-dimensional incompressible Navier-Stokes equations with large-scale
stochastic forcing

* Pseudo-spectral method in triply periodic box
external stochastic force
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Projection operator
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Direct numerical simulations: temporal integration

Integrating factor approach:

% — N(5)) — vs2;,  with N(@;) = — Py G

Define new dependent variable:
~ N\ 2
U = Ujexp(vk©t)

an

oL =N exp(—vk2t)) exp(vk?t) (1)

Temporal integration of (1) by third order Runge-Kutta scheme

Passive scalar with imposed mean gradient in y-direction and unity Schmidt number
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scaling of solver

Direct numerical simulations

linear scaling

linear

DNS of turbulent flows is computationally very

expensive
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Hybrid MP1/OpenMP DNS code (psOpen?2) with
two-dimensional domain decomposition

24576 28672

16384
nodes

8192

nearly 2 million

threads

Runs on IBM BlueGene/Q (JUQUEEN in Germany)

on up to 458,752 compute cores?

M. Gauding, Phd thesis (2014)

2).H. Goebbert & M. Gauding, Report FZ-Juelich (2015)
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Scale-sensitive framework for differential diffusion

Direct numerical simulations
- 3 Schmidt numbers:
Sc=1, Sc=5, Sc=1/5

Turbulent mixing of passive scalars with
- different molecular diffusivities and
- imposed mean scalar gradient:

™ - Taylor-based Reynolds
0P 0o 0% ¢ number close to 100
b, =Ix+ ¢, . _ro e p Z 7o
2+ ¢ ot Hi Ox; Pa Ox? i - Pseudo spectral method
— - Velocity is forced at the
large scales by a
Covariance structure function:  Cog(r,x) = (AdoAdg) stochastic method to
maintain steady state
0 0 =
E<A¢1A¢2> + §<AUiA¢1A¢2> =
5 90! : 5 99 9 Scale-sensitive budget
— (D1 Agy ( ¢} + ¢1> + Dy Ay ( ¢f 4 ¢2)>_ - between transfer,
ori 0x; OXi Ox; OXi dissipation, diffusion,
0p1 0 i
2Dy + Dy)/ ail @(i2> (A (A + Ady)) and production
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Scale-by-scale budget

Sc=1 & Sc=1/5 Sc=1 & Sc=5 Sc=5 & Sc=1/5
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Budget is
satisfied with
good accuracy

—> Diffusive transport strongly depends on the
combination of Schmidt numbers
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Summary & Conclusions

Differential diffusion dominates at the turbulent/non-turbulent
interface

Conditional statistics based on the interface position can reveal
otherwise “hidden features” of turbulence

Developed a scale-sensitive framework for differential diffusion

Perspective: Closing the subgrid terms with a spectral closure (M.
Oberlack & N. Peters, Apl. Sci. Res. 1993 and M. Gauding et al., JoT
2014)

16



