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Differential diffusion

• The turbulent mixing of two or more scalars is encountered in a variety of 
engineering and environmental applications

• When the molecular diffusivity of the scalars is different, the scalars evolve 
differently even if they are initially perfectly correlated

à This process is known as differential diffusion

Differential diffusion is analyzed in the context of
1) Jet flows à turbulent/non-turbulent interface
2) Homogeneous forced turbulence à inter-scale transfer
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DNS of turbulent jet flow
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• Direct numerical simulation of temporally evolving plane jet flow
• Periodic in x and y directions
• 6th order implicit finite difference scheme for spatial derivatives
• 4th order low storage Runge-Kutta scheme for temporal integration
• Pressure treatment: fractional step method with Helmholtz equation for pseudo pressure

• Grid size is 2816 x 2816 x 1500
• Initial jet Reynolds number is 9000

• Two passive scalars with 
• Sc=1 and 
• Sc=0.25



Turbulent jet flow: turbulent/non-turbulent interface
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Fully developed 
turbulent core Irrotational outer-flow

Turbulent/non-turbulent interface

• Free turbulent jet flows are characterized by a 
turbulent/non-turbulent interface that separates the fully 
developed turbulent core from the irrotational outer flow

à Large local gradients across the TNTI: Diffusive effects become important 



Differential diffusion parameter
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• The mixture field of two initially correlated passive scalars depart from each other when the 
Schmidt number is different

• Differential diffusion parameter Z is introduced for quantification



Turbulent/non-turbulent interface
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• Introduce new interface dependent coordinate:
• Define interface based on threshold of vorticity 𝜔 or scalar 𝜙
• The interface defined by both criteria is virtually the same 

M. Gampert et al., J. Fluid Mech. (2014)



Detection of the turbulent/non-turbulent interface
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• Conditional average reveals steep gradient at the turbulent/non-turbulent interface
• -> Interface position is not sensitive with respect to the threshold 

Steep 
gradient at 
the interface



Differential diffusion: decorrelation at the interface
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• Conditional average reveals steep gradient at the interface
• Joint pdf                          shows decorrelation of the two scalars at the interface

interface defined 
by vorticity 
criteria

differential 
diffusion



Differential diffusion: scalar dissipation
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• Conditional scalar dissipation reveals peak in the vicinity of the interface, which is not 
seen by conventional averaging

conditional 
average



Differential diffusion: gradient production at the interface
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• Transport equation for square of scalar gradient



Direct numerical simulations in a periodic box
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• Three-dimensional incompressible Navier-Stokes equations with large-scale 
stochastic forcing

• Pseudo-spectral method in triply periodic box

• In spectral space:

• Using the Poisson equation: 

• Gives:

and

Projection operator

with

external stochastic force



Direct numerical simulations: temporal integration
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• Integrating factor approach:

• Define new dependent variable:

• Temporal integration of (1) by third order Runge-Kutta scheme

• Passive scalar with imposed mean gradient in 𝒚-direction and unity Schmidt number

with uniform mean scalar gradient:



Direct numerical simulations: scaling of solver
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• DNS of turbulent flows is computationally very 
expensive

• Hybrid MPI/OpenMP DNS code (psOpen1,2) with 
two-dimensional domain decomposition

• Runs on IBM BlueGene/Q (JUQUEEN in Germany) 
on up to 458,752 compute cores2

nearly 2 million 
threads

linear scaling

1M. Gauding, Phd thesis (2014)
2J.H. Goebbert & M. Gauding, Report FZ-Juelich (2015)



Scale-sensitive framework for differential diffusion

14

Turbulent mixing of passive scalars with 
- different molecular diffusivities and 
- imposed mean scalar gradient:

Covariance structure function:

Direct numerical simulations
- 3 Schmidt numbers: 

Sc=1, Sc=5, Sc=1/5
- Taylor-based Reynolds 

number close to 100
- Pseudo spectral method
- Velocity is forced at the 

large scales by a 
stochastic method to 
maintain steady state

Scale-sensitive budget 
between transfer, 
dissipation, diffusion, 
and production 



Scale-by-scale budget
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Sc=1 & Sc=1/5 Sc=1 & Sc=5 Sc=5 & Sc=1/5

à Diffusive transport strongly depends on the 
combination of Schmidt numbers

ProductionTransferDiffusive transport
Budget is 
satisfied with 
good accuracy



Summary & Conclusions
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• Differential diffusion dominates at the turbulent/non-turbulent 
interface

• Conditional statistics based on the interface position can reveal 
otherwise “hidden features” of turbulence

• Developed a scale-sensitive framework for differential diffusion 

• Perspective: Closing the subgrid terms with a spectral closure  (M. 
Oberlack & N. Peters, Apl. Sci. Res. 1993 and M. Gauding et al., JoT
2014)


