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Earth’s Plasmasphere

Streltsov A.V. and Mishin E.V., 2018

 Composed by dense and cool 
plasma (E ~ 1 eV) 

 Extends approx. from 1.5 to 6 
Earth’s radii

 Dominated by geomagnetic field, 
hence it co-rotates with Earth

Inner region of the Earth’s magnetosphere, it is composed by plasma of ionospheric origin.
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➔ It is the most important region for the Space Weather



Field Line Resonances

Field Line Resonance (FLR) frequencies can be excited by 
the interaction between shear Alfvén modes and MHD 
compressive waves. This coupling can produce standing 
waves along a specific geomagnetic field line (L).

where        is the Alfvén velocity and      (     ) is the initial 
(end) point of the field line (L).

Assuming: 1. a geomagnetic model (B)
2. a functional form for the density (ρ)
3. the field line length

FLR frequency                    equatorial plasma
    density
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Dipolar approx of the 
Geomagnetic Field

MHD 
waves 

from Sun
Eigenperiod n=1



FLR Frequencies Identification

State of the art: Gradient method (Waters et al., 1991) 
from ground-based magnetometers (ULF measurements)

Assuming:
1. Eigenfrequency linearly decreases poleward for stations 

slightly separated in latitude (this is not true passing 
through the plasmapause)

2. Meridional aligned stations

➔ Then it is possible to estimate the FLR frequency of the 
mid-point (MP) by computing the discrete Fourier 
cross-spectrum of the two signals.
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1. Cross-Amplitude crosses unity with positive 
(negative) slope

2. Cross-Phase has its maximum (minimum) value



Field Line Resonances Monitoring
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EMMA provides magnetic measurements 
with a resolution of 1s. 

Real-time monitoring of the 
plasmasphere dynamics

Many authors created (semi-)automated 
tools for monitoring the plasmasphere via 
FLRs (Del Corpo et al., 2018; Wharton et al., 2018; 
Lichtenberger et al., 2013; Berube et al., 2003; Chi et 

al., 2013). 
All the current methods rely on the cross-
phase technique.
All these methods require the human 
intervention

European quasi-Meridional 
Magnetometer Array (EMMA)

(~ 30 stations)



Machine Learning Approach
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Framework:
FLR frequencies are a powerful tool to sound the cold plasma in the 
inner magnetosphere. Cross-phase spectra contains sufficient 
information for estimating FLR frequencies from ground-based ULF 
measurements.

Goal:
Using Machine Learning (ML) methods to build an automated tool 
for estimating FLR frequencies from cross-phase spectra.



Machine Learning Pipeline
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Machine Learning Pipeline
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Raw Data & Target: Data Source

The data set created by Del Corpo et al. (2019) contains cross-phase spectra and 
validated FLR frequencies (first harmonic) with a time resolution of 30 mins. and 
an average relative error  at any latitude. The fundamental frequencies range from 
few mHz (MUO-PEL) to about 60 mHz (SUW-BEL).

• 4 station pairs (SUW-BEL, TAR-BRZ, OUJ-HAN and MUO-PEL)
• 176 non-consecutive days (between 2012 and 2017)
• 13 geomagnetic storms (e.g. St. Patrick’s day storm, 2013)
• several different geomagnetic conditions
• about 4000 samples per stations pair
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Feature Matrix

INPUT: Cross-phase spectra
OUTPUT: validated FLR frequencies 



Machine Learning Pipeline

Standardization, Normalization, 
Log-transform, …
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Machine Learning Pipeline

7:1 ratio Train/Test
Cross-Validation 
technique
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Machine Learning Pipeline
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Machine Learning Algorithms

For each pair of stations we evaluate 6 different ML algorithms typical used for 
regression problems.

1.   Kernel Methods: 
Kernel Ridge (KRR) and Support Vector Machine (SVR)

2.   Tree-based Methods: 
Decision Tree (DTR)

3.   Ensemble Methods: 
Random Forest (RF), Light Gradient Boosting Machine (LGBM), Extreme Gradient 
Boost (XGB)
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Machine Learning Pipeline

CV
+

Hyperp. Tuning
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Model Comparison

Results of the cross-validation 
procedure on the training set:

• Kernel, Tree-based and Ensemble 
methods have significantly 
different performances 

• Tree-based methods result better in 
handling discrete-like data

• Ensemble methods are the most 
suitable with data set with a large 
number of features (200) wrt the 
number of samples (4000)
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Machine Learning Pipeline

Best Model
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Results 2: Global Results

  R2 MAE 
(mHz) MAPE RMSE 

(mHz)
CV Time 

(s)

KRR 0.613 2.42 0.128 3.9 2.83

SVR 0.688 2.00 0.106 3.5 17.8

DTR 0.828 1.00 0.057 2.6 1.82

RF 0.840 0.93 0.042 2.5 32.7

LGBM 0.878 0.98 0.052 2.3 46.6

XGB 0.875 0.95 0.046 2.2 24.3

• Estimation error does not increase with increasing 
frequency (top panel)

• All models have higher estimation errors during 
nighttime (dark-grey area), or when one of the two 
footprints is nightside (light-grey area)
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Results 3: Latitudinal Variation
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Relative estimation error of the four pairs of 
stations for six consecutive days.

• Error slightly increases with increasing L 
probably because of fuzzier cross-
phase spectra

• Average relative error is +1-2% from 
L=2.1 to L=4.1, for MUO-PEL is 4.5% 
meaning that overestimation errors 
have a heavier weight.

• At every L we can observe that the error is 
higher during nighttime



Results 4: Case Study
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Except for MUO-PEL, the estimation error does not show any 
dependence from the geomagnetic activity level.

Actual
Predicted
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Conclusions and next steps…

• Machine Learning algorithms (especially supervised ensemble methods with a feature-based approach) 
resulted a powerful tool for estimating FLRs from cross-phase spectra.

• The algorithm performances showed a little dependence on the station latitude, but it is worth noting that 
the estimation error remains small even during highly disturbed geomagnetic conditions            
(  Space Weather tool for monitoring the plasmasphere dynamics).

• In order to obtain more robust models/predictors it is necessary to train the algorithms on a larger data set 
and using more stations along the EMMA network.

• This is only a preliminary result for evaluation purposes. To create a completely automated tool we need 
for an additional step which determines when FLRs can be observed from signals.

• Our final goal is to create a single ML tool which includes all the EMMA stations (even other 
magnetometer array) and which is able to determine FLR frequency directly from spectrograms (CNN)
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