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Plan of exposition (1) 

• 1) Introduction 

• 2) a glimpse at scale relativity theory (SR) and 
conditions for its  application 

• 3) application of SR to turbulence 

• 3.1 reminder of previous results in homogenous 
isotropic turbulence (HIT) 

• 3.2 application of SR to  rotating turbulence

• (in course)

• Conclusions (provisory) 

 



1. Introduction
• Fluid Turbulence : NS et Euler equations, still puzzling 

since  the nature of possible singularities in (x,t) if any 
are not yet known…(singularities are thought to be 
central for intermittency /large  acceleration tails)  

Multi-fractal behavior of variables well observed in data 
but the theory is still at the level phenomenology/not 
solving the true dynamics.

• Proposal here for  a new approach (less 
phenomenological? ) based on a macro-quantic  
Schrodinger equation. Link with NS-Euler eqs through  
the covariant derivative in the stochastic case , 
reflecting fractal geometry.

3



1) Fluid turbulence (1) 
• Fluid described by NS , Euler or Burgers equations (p=0); MHD 

case (with B in addition) Quadratic Non Linearities (see 
equations) non local one for pressure p when it exists.

• Ex of open pbs : in 3D 

• a) are  these NS , Euler, Burgers equations still valid in the 
turbulent regime (possible new terms, expansion   in grad(v)
…)

• b) if yes, the  nature of their singularities is not yet known…

• c) passage NS->Euler (zero viscosity)  still not well understood 
(maths: finite blow up or not and so on …) ; ex : energy 
cascades are observed but not yet suitably  predicted 
(example :  phenomenology  of multiplicative cascades…)

• d) intermittence (definition) still  to understand 

• Caracteristics of turbulent field v (and p), and vorticity  fields 
…: non differentiable, bundle of paths going at “ random”….



2. Fluid turbulence and SR

• Kolmogorov phenomenology scale invariance (but it is not exactly like this in real experiments) 

• 3 main ingredients :I+II+II to apply the Scale relativity (LN), theory with underlying fractal geometry -
>scale dependence in x,t  of the involved variables , but  also in dx, dt . Here we adopt a Lagrangian 
approach.  SR->QM in the x space 

• I) chaotic -> stochastic description ; Brownian motion but  now in v space and « K41  law » , with 
fractal dimension Df=2 : δv2 ≈ (Dsct) δt (more usual in x : δx2 ≈ δt )

• II) existence of an infinity of trajectories (here of  Lagrangian tracer in v space) 

• III)  local irreversibility (symmetry  breaking)  in dt->-dt

•  (different from stochastic mechanics for which  t->-t breaking)

• ->two-valuedness of acceleration…(more usual of velocity)  

• Additional conditions for application of SR to turbulence :

• 4) Suppose a number of scales sufficient in particular in the inertial range /Re sufficiently high (ratio TL/th  of 

integral time versus K dissipation time :TL/th=Rel/2C0   ,C0= 4 to 7  , see good number is of order 100 or more) 

• 5) work on an equation such as the Newton equation  (as with. the NS equation) 

• cf other approach  :like  Stochastic NS, with proper choice of the  forcing source term (in x and in t) …Generally 
we  find a Schrodinger operator by applying  a covariant like derivative when starting with Newton or NS-Euler 
eqs. 



2. SR and covariant derivative 

• The supposed underlying stochastic background (in 
x,t) is encoded in the covariant derivative D^ /Here 
the turbulent velocity field itself induces a fractal 
(scale dependent) non differentiable such a 
backgound) 

• D^ expresses the fractal geometry (like the Einstein 
covariant derivative for curved space-time)

• D^ allows to go from NS-Euler eq. to Schrodinger 
eq. (in x space in QM, in v space here) 



Application to turbulence :
 v = is now the  basic coordinate 

Motion equation : Navier-Stokes  

Derivative of NS: 

(r=1,if  incompressible)
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(potential part of acceleration)

(Irreversibility -> doubling of acceleration vector) 

(New form of total derivative)

(K41)



Schrödinger form of mean motion equation in special 
case : dF(v,t)/dt=-gradv(Φ(v,t))

Back to stochastic initial description :  A is now known

Sub-special case : q = cst  (ex 1D . : harmonic oscillator, psi real) --> A+ = Aq 

Quantized 

Refs. : L. Nottale, arXiv:1306.4311; Cells 2014, 1, 1-35; LN, Space-Time Geometry and 
Quantum Events, Chapter 5, Ed. I. Licata, Nova Science Pub., 2014. LN+TL , POF 2019

With dissipation -> Non-Linear Schrödinger , with a term in y ln y



3) Application of SR to fluid turbulence  

• 3.1 previous results of SR applied to  HTI  : a 
selection …

• 3.2 rotating turbulence  

• Hope : Looking for recovering previous results 
of HTI in this case but now expectating also 
getting  new features : predictions and 
verifications to be performed on relevant 
available data. 



3.1 previous results of SR applied to  HTI 
(isotropic case)

• Main predictions and results /+figures 

• Looking for classical and quantum oscillators 

• Pdf(v)/Pdf(a) 

• Comparison with experiments 



 Reminder of main results of SR  in (HIT)  turbulence

relativity methods in velocity-space to turbulence description

 (réf : L. De Montera, 2013, A theory of turbulence based on 
scale relativity, arXiv:1303.3266)

• New Schrödinger-like form of motion equations (on the time 
derivative of NS eqs.) in v space 

• Main consequence: existence of a new « divergent » 
component of acceleration

• Comparison to global experimental data : aim to describe  
large tails of the accelerations’ PDF

• Comparison to local experimental data : a new proposed 
mechanism for intermittence bursts

• (Not shown here : Scaling laws and link to related  multifractal 
studies, see POF 2019)…..
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3.1 SR/HIT  theoretical predictions

• Velocity PDF : globally close to Gaussian (Mordant 
2001, Voth et al 2002, etc.), but :

• Locally PDF (v) : strongly deviates  from Gaussianity 
(Heppe 1998, etc.)

• Here:                                  ; psi > 0 and < 0   Pv has 

• minima at Pv = 0
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 Divergence of acceleration 
on minimas of Pv 

= our singularities here 
Predicts large tails of 

acceleration PDF



Tails of acceleration PDF : P[v]=0

• General case : near a zero of Ψ= g (v-v1)  

• Corresponding acceleration (for v1 = 0): 

• Derived asymptotic PDF of acceleration P(a) 
from P(v) by inversion :
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General method to go from PDf(v) to PDF(a)   
(1) 

• To get the PDF Pa[a]: we now ψ[v]  then P[v] = /ψ[v]/2

We make a realization of  P[v] with  vi distributed   
according to P[v];  we know Aq[v] = Dv  (∂v P[v]/ P[v]) ; 

we compute the  values Aq[vi]  for each vi 

Then we an histogram of these Aq[vi]  which yields the 

seaked PDF : Pa[a];

• For functions : 

• We call V(a)=A-1(a) the inverse of the function a=A(v), 
then we use the following inversion formula :



General method to go from PDf(v) to PDF(a)   
(2) 



General method to go from PDf(v) to PDF(a)   
(3) 

• Applications :

• For a Gaussian PDF in v: P(v) in exp(-(v/sv)2)

• We get a Pa(a)  in exp(-(a/sa)2), with sa=Dv/sv

• (Dv is in v.a) : Global case ->no intermittency

• Need to look at local pdf ‘s …

• Application to harmonic oscillator  (HO) , we get 
the squared Lorentzian for P(a) , by  using he 
inversion formula  for explicit solution  of  the HO, 
for P(v). See examples next…



Test of theoretical predictions with 
experimental data : acceleration PDF

Test of theoretical predictions with 
experimental data : acceleration PDF
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Examples: quantized harmonic oscillator,
 ≈ particle in a v-box, etc.. --> 

Tails of proba

Peak of proba

v-Box :



Comparison with  experimental data L
(but surestimate the large a) 
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N. Mordant 2001 PhD thesis. Mordant et al PRL 2001. 
Double von Karman flow; Lagrangian tracers 250 mm ; ultrasonic doppler tracking; 
sampling 6.5 kHz == 0.7 th (0.22ms); Rl = 810;  fully developed turbulent flow. 



Pdf(v) for classical or quantum oscillators 

• Comparison between the PDFs of a quantized 
harmonic oscillator in v-space (red curve) to 
that of a classical harmonic oscillator having 
the same parameters (n = 3, vm = 0 and v0 = 0.3 

m/s.) see next : expression and figure. 



Analytical expression of the Pv for harmonic 
oscillator  

To get the  PDF(a) from PDFv)=Pv   (see other  slide)



Classical (blue) vs. quantum harmonic 
oscillator (in red): velocity PDF
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n=3; v0 = 0.3 m/s 



Transition classical-’quantum like’ in (a,v) 
phase space   



Local quantized harmonic v-oscillator Φ(v) shape on a given real 
data 

23

Seg3398-1-1770: n=3, v0=0.3

All seg ->

  Account of 
    Transition cl-qu
    |a| < sa



Mechanics of acceleration intermittence
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Quiet periods = particle trapped in main probability peaks 
Bursts = macroquantum jumps between probability peaks

acce
lera ti

o
n

P[v]
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(th = 0.2 ms)

(TL = 22.4 ms = 146 tu)



Mechanics of acceleration intermittence, 
Gaussian shape in classical |a| > sa zone for P(v)
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Modelization of minima of P(v) –> Aq(v)
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Blue: observed running acceleration dispersion in 
function of velocity (partition : 9 points)

Red: predicted value of |Aq|(v)



Predicted Aq[v(t)] vs observed a(t) : best with time averaging
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Averaging on Dt = TL/2 = 73 tu

Aq[v(t) vs minimas of bursts of a(t).
Statistical significance of correlation :
 10.1 sigmas 



3.2 Application of SR to rotating turbulence

• Aims : examine if the previous results are still 
valid  here (for at least hoped ‘universal’ ones) 
+get new results 

• Predictions of new local PDF(v) and PDF(a) but 
accounting now for possible anisotropy (on v// 

and vperp and on  a// and aperp  (//and perp with 

respect to the rotation direction) 



3.2 New prediction : application 
of SR to rotating turbulence

The NS incompressible equation of motion in the rotating 
frame reads : 

If again u is fractal field in the sense du2 in dt we can write  now a 
Schrodinger equation in the u space but  in presence  of a vector  

potential Ac(u) to account for the Coriolis force such that 
Curl(Ac)=2Ω x u

Dtu=- Ñ(p+ pc) / r - 2W ú+(hDu)

Dtr =- r(Ñ.u)(CP=0)

Dt =¶t +u.Ñ, pc =r(W ŕ)2 / 2



3.2) SR for rotation (2)

•We can now predict like before another  new acceleration 

• A=-2iDugradu(Ln(Ψ(u(t,dt),t))   (I)

• But now Ψ  is solution of a (vectorial) Schrodinger  eq. with Ac(u) : 

(3)

Solutions can be found  within 3 D harmonic oscillators : Φ tot=Φ external  potential, +Φc 
centrifugal perpendicular potential (also harmonic)  and 3nd potential which comes here from 
the Ac potential expression.

Solving for stationnary states with HΨ=EΨ, H Hamiltonian is here symmetric in vx,vy  variables.  

We choose in  cartesian coordinates the (gauge) expression  Ac=(-Ωy, Ωx,0) for Ω//ez 

- exact determination of the eigenfunctions and eigenvalues E(Lz)  involving the kinetic 
momentum Lz=vxd/dvy-vyd/dvx  , prop to ∂ / ∂j,  for eq.(3):

(iDu¶t+ (iDuÑu - Ac(u,t))
2 - Ftot(u,t) / 2)Y(u,t)=0



3.2) SR for rotation
a) Solving for vz  

we get a standard harmonic oscillator solution 

assuming an initial  potential in vz as  wz
2 vz

2/2

->Pdf(vz) in Hnz(bz vz)
2exp(- bz

2(vz- vz0)
2) as above in HIT 

2bz
4 Dvz

2=wz
2 /2 ; With quantized energy  E(nz)=2Dvz wz (nz+1/2)

we get  the associated  Aq as in HTI :

b) Solving for vperp (v, j)
The original equation is :

(Dv2∆v+v-2∂2j −2iΩDv∂j −(ω +Ω)2v2/2 +E)) G(v, 
j)=0  it can be solved exactly only if we take the



3.2 SR for rotation

• the eigenvalues of the Lz (∂j) are in  l(z), and those of Lz
2 in l(l+1)...Thus 

factorizing by this Ansatz  as  G(v, j)=g(v) h(j) with h(j) in exp( il j ); It 
remains a radial equation as :

• which can be solved almost exactly in v as :

       

 

with 2b4 Dv2=(w2 + W2 )/2 , l1z
2=lz  (lz+1) 

With quantized energies En,l=2Dv (−Ωlz+(ω2 +Ω2)1/2(n+l1z +1)) ; En,l,nz=Ez(nz)+En,l ; 

PDF(v) in Hn(b v)2exp(- b2(v- v0)2) v2l1z   : NEW….



Pdf(v), a , Pdf(a) in // and perp directions (1)

• Pdf(v,vz)=Pdf(v).Pdf(vz) , P could be anisotropic

• Accelerations are  given by :

•  for az :

• with same predictions as in HTI for asymptotic 

• Pdf(az) in az-4  and central pdf(a) with  squared 
Lorentzian  shape +exponential cut-off due to 
dissipative scales (not shown in this talk).  



Pdf(v), a , Pdf(a) in // and perp directions (2)

• For aperp :

•   

•   with again same predictions as in HTI for asymptotic 
PDF(aperp) in a-4  and central pdf(a) with  squared like 
Lorentzian  shape +exponential cut-off due to 
dissipative scales but also a term in lz/v in addition in 
Aq(v).

• ->DEFORMATION of  the shape of the PDF(aperp), see  next… 



New predictions in the perp direction 

• Thus the  v2l1z contribution in Pdf(v) involves a 
flattening of the central regions (v around 0) in 
v space; wich in turn leads to  an enlargement 
of the high acceleration zone around v=0 by 
the lz/v term in Aq(v).

• See next figures 



New prediction for P(v) and Aq(v)

• Figure (1): PDF of velocities generated by the 
solution ψv of the Schrodinger-Coriolis equation 
(withPv =|ψv|2,for v0 =1(arbitrary unit),n=3 and lz 

=0 to2. The value lz =0 corresponds to an absence 
of Coriolis force (upper left figure). The presence 
of a Coriolis force involves a suppression of the 
inner secondary peaks increasing with the value 
of lz, leaving a large empty central band with 
almost forbidden velocity values. 



Figure for Pdf(v) for l=0,1,2 (n=3)



Figures for acceleration Aq(v) 

• Figure (3): Magnitude of the acceleration 
component |Aq| = Dv |∂v lnPv| generated by 
the solution of the Schrodinger-Coriolis 
equation ψv (with Pv = |ψv|2, for Dv = 3, v0 = 1 

m/s, n = 3 and lz = 2 (down figure), compared 
with its form in the absence of a Coriolis force 
(lz = 0, up figure). The effect of the Coriolis 
force amounts to enlarge the velocity range 
where large accelerations are generated. 



Figure for Aq(v) for l=0, and l=2 (n=3)



Deformation of P(a) with l=0
brown =Gaussian, green = squared  Lorentzian , blue by inversion of 

HO  : recall Isotropic case (no rotation) 



Deformation of P(a) with l=2
brown =Gaussian, red--- = squared  Lorentzian , blue by inversion 

of HO (n=3)



Deformation of central P(a) with l=2
brown =Gaussian, red--- = squared  Lorentzian , P(a) in blue by 

inversion of HO (n=3)



3.2 Comparison with data (1)

• Various proposals /data :

• Analysis of relevant geophysical data (to be 
done, but found the right data first ) 

• Proposal in laboratory experiment : add a 
rotation in previous experiments. For example 
with the curve shown  on slide 23 we expect  if 
the theory is correct the supression of the two 
inner secondary peaks in the pdf(vperp).



23 bis : Local quantized harmonic v-oscillator Φ(v) shape on a 
given real data 

44

Seg3398-1-1770: n=3, v0=0.3

All seg ->

  Account of 
    Transition cl-qu
    |a| < sa



3.2 Comparison with data 
here from DNS of A.Pumir et al (2019)

• Conditions of the DNS : (Buria et al) in a cubic domain  
with 5123 grid points +random forcing  in t and isotropic 
in K space , use of GHOST code,  but TL/th  of order 10 

only here. Re=2379 for run HIT  , Re= 2645 for run with 
pure rotation. 

• Comparison of items (but only here on a few  Lagrangian 
trajectories) for run HIT and for run in pure rotation.  

• But may be not large enough inertial range  of the data 
…



Comparison with (DNS) data 

• Figure (5): Examples of typical behavior of velocity 
PDFs in the no-rotation (left figure) and Coriolis 
cases (right figure). The no-rotation case shows an 
alternance of narrow minima and maxima, while the 
Coriolis case shows, as theoretically expected in the 
Schrodinger regime, large bands of almost null 
probability due to the suppression of secondary 
peaks.         

• But to be confirmed on more data (and more 
turbulent ones)…



On some L trajectories : Figures for pdf(v) 



Fabio Feraccio courtesy , global pdf(vperp) , 
for different all runs 



Fabio Feraccio courtesy , global pdf(vz)



Our (local) analysis on a few L trajectories for 
pdf(vz) W=0 or not  



Idem for pdf(vperp)



On L trajectories  pdf(ai) for W=0
(1/ ai 4 law for large ai i=x,y,z)



On L trajectories  pdf(ai) for W non 0
(1/ ai 4 law for large ai )



Deformation of P(aperp) in (L) data ?



Pdf(az) and Pdf(aperp) from Pumir et al paper (aL/aE?)
both curves are similar and above the HIT case (---)



Conclusions (provisory) 

*Predictions done but analysis for the moment done only on very few data: need for a deeper 
detailed  statistical analysis  for validation ….and abve all check to be   in a suitable turbulent 
enough regime 

*Need of more relevant data from experiments and/or from   DNS to test predictions on P(v) , 
a and P(a)…+anisotropies…. 

Open  pb :  new physics involved ? (not included in the DNS) or just a physics already there 
but hidden, and revealed by the SR approach ?  

Next : 

• Look also at more involved cases (for theory +predictions)

• Example for Ω not uniform : Ω(x)->Ω (u)?  to account for example  for  a velocity 
shear….

See  later MHD cases on both (v,B) variables
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