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Computational challenges in numerical simulations of stably stratified flows

1. Mathematical Model

The full incompressible, viscous (laminar), variable density model can be written as:

∂ρ

∂t
+ u · grad ρ = 0 , (1)

ρ

(
∂u

∂t
+ div(u⊗ u)

)
= −grad p + div 2µD + ρg . (2)

These equations together with the incompressibility constraint divu = 0 lead to the set of
governing equations for the velocity u(x, t), density ρ(x, t) and pressure field p(x, t).

This model is sometimes called the non-homogeneous Navier-Stokes equations ,
see e.g. Lions [16].
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The pressure and density fields can be assumed to be a perturbation of the hydrostatic
equilibrium state:

ρ(x, t) = ρ
0
(x) + ρ′(x, t) i.e. ρ(x, y, z, t) = ρ

0
(z) + ρ′(x, y, z, t)

p(x, t) = p
0
(x) + p′(x, t) i.e. p(x, y, z, t) = p

0
(z) + p′(x, y, z, t)

The background density and pressure fields are linked by the hydrostatic relation:

grad p
0

= ρ
0
g i.e.

∂p
0

∂z
= ρ

0
g where g = (0, 0, g),

This leads to a rearranged momentum equations:

ρ

(
∂u

∂t
+ div(u⊗ u)

)
= −grad p′ + div 2µD + (ρ− ρ

0
)︸ ︷︷ ︸

ρ′

g .

So far no approximations were made.
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The Boussinesq approximation is obtained from the full model by replacing the complete
density ρ(x, t) on the left hand side of momentum equation by a suitable fixed (in space
and time) characteristic density ρ∗.

∂ρ

∂t
+ u · grad ρ = 0

ρ∗
(
∂u

∂t
+ div(u⊗ u)

)
= −grad p′ + div 2µD + (ρ− ρ

0
)g .

This system was used in the numerical simulations presented hereafter.

It is often equivalently rewritten in terms of the density perturbation as:

∂ρ′

∂t
+ u · grad ρ′ = −wγ where γ =

∂ρ
0

∂z

ρ∗
(
∂u

∂t
+
(
u · grad

)
u

)
= −grad p′ + div 2µD + ρ′g .
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2. Stably Stratified Flows - basic phenomena

The stable density/temperature gradient is responsible for generating waves in the flow
field.

z
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These waves are characterized by the Brunt–Väisälä frequency

N =

√
g

ρ∗
∂ρ0
∂z

=

√
− g

Θ∗
∂Θ0

∂z
(3)

The wavelength can be estimated as λ ≈ U ∗/N .
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Flow over horizontal strip
Test case configuration

The 2D computational domain represents a rectangle attached to a horizontal plate mov-
ing in a towing tank (the physical domain). Chashechkin & Mitkin [6], Chashechkin, Mitkin,
& Bardakov [7]

0U

ρ
0

Ω

(z)

H
iL L p

Ω

L
O

The dimensions are set to L = 1.5m, H = 0.5m, Li = 1.0m, Lp = 0.025m. The grid has
258× 117 points with the minimum cell size in the near-wall region ∆z = 0.5mm
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Boundary conditions

Two-dimensional case is considered and thus only boundary conditions are given for this
2D case (in x–z coordinates only).

• Inlet . . . The constant velocity profile u = (U
0
, 0) is prescribed. The horizontal velocity

component u is equal to U
0

= 0.17cm/s or U
0

= 0.25cm/s. Density perturbation ρ′ is
set to zero, while homogeneous Neumann condition is used for pressure.

• Free stream - Upper boundary . . . Homogeneous Neumann condition is used for ve-
locity components and density perturbations. Pressure is prescribed as a constant
along the outlet boundary.

The background density field is given by

ρ
0
(z) = ρ∗ exp

(
− z

Λ

)
with ρ∗ = 1000 kg ·m−3 and Λ = 50m .

The other parameters are dynamical viscosity µ = 10.0−3 kg ·m−1 · s−1 and gravity accel-
eration g = −10.0m · s−2.
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Boundary conditions summary

Ω

∂u

∂n̂
= 0

∂ρ′

∂n̂
= 0

∂p′

∂n̂
= 0

∂u

∂n̂
= 0

∂ρ′

∂n̂
= 0

∂p′

∂n̂
= 0

u = (0, 0)

u = (U0, 0)

∂p′

∂n̂
= 0

∂ρ′

∂n̂
= 0

ρ′ = 0.0

∂p′

∂n̂
= 0

∂p′

∂n̂
= 0

∂ρ′

∂n̂
= 0

∂u

∂n̂
= 0

p′ = 0.0

∂ρ′

∂n̂
= 0

∂u

∂n̂
= 0
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Numerical Results

Vertical velocity contours
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Tomáš Bodnár 9/23+



Computational challenges in numerical simulations of stably stratified flows

Velocity profiles
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Cut taken from the strip leading edge at the angle of 45 degrees (U0 = 0.17cm/s).
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Global view - Whole domain
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Horizontal velocity and pressure contours (U0 = 0.25cm/s).
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First Problems - Compatibility of boundary conditions

w =0z u =0x u=U

u =0x

zw =0

w=0

u=U(z)
&

w=0

=0x

&

u +w =0x

u   +w   =0zx

z

ρ

ρρ

w=0u=0

• “soft” conditions are not soft enough

• velocity and density conditions are strongly coupled

• unfortunately ρx = 0 at the inlet is not a good choice
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ρ∗(ut + uux + wuz) = −p′x + µ(uxx+uzz)

ρ∗(wt + uwx + wwz) = −p′z + µ(wxx + wzz)+gρ
′

u=U(z)
&

w=0

=0x

x zzp’ =  u

zp’ =g  ’

x =   u_
g zzz=0x

!ρ

µ

ρ

ρ µρ ’’

• ρ′x∝uzzz =⇒ uρ′x + wρ′z = −γw
• inlet velocity profile generates vertical velocity perturbation
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Suitable velocity profiles?

x zzp’ =  uu=U(z)

u=U

u u u uzzz zzz

x
p’ =0

µ

• not every velocity profile can guarantee a fully developed density profile

• ρ′x = 0⇐⇒ uzzz = 0

• U(z) = a0 + a1z + a2z
2 where a0 = 0 for no-slip condition
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3. Numerical Methods in Detail

• Time-marching method – The steady solution is reached as a limit for t→∞
• Artificial compressibility – A pseudo-time derivative of pressure is added to the con-

tinuity equation (i.e. the divergence-free constraint) to enforce the incompressibility.

• Semi-discretization (method of lines) – The system of PDE’s is first discretized in
space, which leads to a system of ODE’s describing the temporal evolution at every
grid point.

• Compact finite-difference space discretization – High-resolution approximation of
spatial derivatives, using rather compact computational stencil.

• SSP Runge-Kutta time stepping – A time-integration method that doesn’t introduce
non-physical oscillations to the numerical solution.

• Low-pass filter stabilization – Compact filters are used to remove high- (i.e. grid-)
frequency oscillations from numerical solution, while the longer wavelengths remain
undamped.
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4. Flow Over a Hill - Computational Setup
The hill shape is the same as in Hunt & Snyder [14], resp. Ding, Calhoun, & Street [8], i.e.
the surface elevation zs(r) is given by an inverse of a fourth order polynomial in terms of
a distance r from the hill symmetry axis.

zs(r) =
h

1 + (r/h)
4

The domain dimensions are Lx = 30h, Ly = 10h, Lz = 5h.

LxL
y

L
z

Y

X
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z

x

15h

L  =5hz
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h
h/2

2h
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Physical parameters
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The fluid is characterized by density ρ∗ = 1000kg · m−3 and dynamical viscosity µ =
10−3kg ·m−1 · s−1. The linear background density profile is defined by ρ

0
(z) = ρ∗ + γ ·

(z − h). The gravity acceleration acts against the z coordinate, so g = −10m · s−2. The
hill height h = 2cm = 0.02m was chosen as the characteristic length scale for both, the
Reynolds number (where h represents the boundary layer thickness) as well as for the
Froude number (where h represents the vertical displacement scale).
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The two physical quantities that are being varied in simulations are the characteristic (free
stream) velocity U∞[m · s−1] and the background density gradient γ = ∂ρ0

∂z
[kg ·m−4]. The

Froude number is then given by

F =
U∞
Nh

=
U∞

0.1
√
|γ| · 0.02

= 500
U∞√
|γ|

=
1

400

Re

N

γ = 0
N = 0

γ = −25
N = 1/2

γ = −100
N = 1

γ = −400
N = 2

γ = −1600
N = 4

U∞ = 0.01
Re = 200

∞ 1 1/2 1/4 1/8

U∞ = 0.02
Re = 400

∞ 2 1 1/2 1/4

U∞ = 0.04
Re = 800

∞ 4 2 1 1/2
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5. Preliminary Simulations

U∞ = 0.01 0.02 0.04

F =∞

γ = 0 γ = 0 γ = 0

F = 1

γ = −25 γ = −100 γ = −400

F = 1/2

γ = −100 γ = −400 γ = −1600
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U∞ = 0.01 0.02 0.04
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U∞ = 0.01 0.02 0.04
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Boundary issues

• Sensitivity to boundary conditions

• Non-physical effects due to boundary conditions

• Long-range influence of boundary conditions

• Coupling between boundary conditions

• Convergence issues

• Well posednes issues

• Physical / Mathematical / Numerical conditions
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the end ...
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6. Boundary Conditions

The standard computational setup used in the below discussed series of simulations is
based on the following boundary conditions:

• Inlet . . . The velocity profile u = (u(z), 0, 0) is prescribed. The horizontal velocity
component u is given by the second order Pohlhausen-Kármán profile u(z) = U∗

(
2z̃−

z̃2
)
, where non-dimensional height z̃ is defined using the boundary layer thickness

H = Lz as z̃ = z/H . Density perturbation ρ′ is set to zero, i.e. ρ = ρ
0
(z).

• Outlet . . . All velocity components and also the density (perturbation) are extrapo-
lated.

• Wall . . . No-slip conditions are used on the wall, i.e. the velocity vector is set to u =
(0, 0, 0). The density is extrapolated.

• Free stream . . . All velocity components and also the density are extrapolated.

• Sides . . . All velocity components and also the density are extrapolated.
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Far-field boundary
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Vertical velocity contours and flow streamlines in the plane of symmetry.

• Boundary is purely artificial

• Inlet/Outlet type is not a-priori defined

• Velocity vector is almost parallel to the boundary

• Far-field boundary is not “far enough”
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Vertical velocity isosurfaces.

complete solution truncated solution
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Vertical velocity contours in the plane of symmetry – truncated solution .

Vertical velocity contours in the plane of symmetry – truncated domain – ∂p
∂n

= 0.
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Contours of the vertical velocity component w and flow streamlines.

truncated solution truncated domain – ∂p
∂n

= 0
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Contours of the transversal velocity component v and flow streamlines.

truncated solution truncated domain – ∂p
∂n

= 0
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Isosurfaces of the vertical velocity component w.

Isosurfaces of the transversal velocity component v.

truncated solution truncated domain – ∂p
∂n

= 0
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Other (better) options?

• Do-Nothing condition (Rannacher, Heywood, Turek (1993)) [13]

p = µ
∂un
∂n

and µ
∂uτ
∂n

= 0

• Directional Do-Nothing condition (Braack, Mucha (2014)) [5]

p = µ
∂un
∂n
− 1

2
ρu−nun

• “Do-Something” condition – Convective Pressure Derivative (CPD) [4, 3]

∂p

∂n
= ρ∗|u|∂un

∂n
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7. Numerical Results

Contours of the vertical velocity component w - nondimensionalized w̃ = w/U∗.

truncated solution

truncated domain – ∂p
∂n

= 0 truncated domain – CPD
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Contours of the transversal velocity component v - nondimensionalized ṽ = v/U∗.

truncated solution

truncated domain – ∂p
∂n

= 0 truncated domain – CPD
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Isosurfaces of the transversal velocity component v - nondimensionalized ṽ = v/U∗.

truncated solution

truncated domain – ∂p
∂n

= 0 truncated domain – CPD
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Isosurfaces of the vertical velocity component w - nondimensionalized w̃ = w/U∗.

truncated solution

truncated domain – ∂p
∂n

= 0 truncated domain – CPD
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Pressure contours in the plane of symmetry.

truncated domain +2H truncated domain +2H

truncated domain +H truncated domain +H

truncated domain truncated domain
∂p
∂n

= 0 CPD
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Longitudinal velocity contours in the plane of symmetry.

truncated domain +2H truncated domain +2H

truncated domain +H truncated domain +H

truncated domain truncated domain
∂p
∂n

= 0 CPD
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Vertical velocity contours in the plane of symmetry.

truncated domain +2H truncated domain +2H

truncated domain +H truncated domain +H

truncated domain truncated domain
∂p
∂n

= 0 CPD
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8. Conclusions & Remarks
• Physical interpretation/justification of the CPD condition

∂p

∂n
= ρ∗|u|∂un

∂n

The term ∂un
∂n

is really essential. It can be better understood when a local coordinate
system is adopted at an artificial boundary point. Let us, e.g., assume that the (outer)
normal direction is associated with the z axis, while the x and y axes now define a
tangential plane (to boundary). Due to the divergence-free constraint ux+vy+wz = 0,
the value of normal derivative of normal velocity component wz indicates to what
extent the tangential, two-dimensional continuity equation ux +vy = 0 is satisfied, i.e.
ux+vy = −wz. So, whenwz = 0, the flow field can be seen as locally two-dimensional
and it makes a sense to drop the pressure derivative in the third (normal) direction.

In the absence (or negligibility) of local viscous forces, the pressure gradient
should compensate the inertia represented by the convective term. Thus the propor-
tionality factor (with respect the normal velocity normal derivative ∂un

∂n
= wz) was set

to ρ∗|u|, which assures the proper (convective term like) scaling and is invariant to
the orientation of the chosen coordinate system.
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• No-slip wall & Inlet – It is good to note that at the no-slip wall (where |u| = 0) the
CPD condition reduces to the classical homogeneous Neumann pressure condition.
Also at the inlet, where ∂un

∂n
vanishes (e.g., due to prescribed uτ = 0) the homogeneous

Neumann condition for pressure is recovered. So, in fact, we can claim, that in our
case we have used the CPD condition on all boundaries, except the outlet.

• Velocity at the far-field boundaries – The (linear) extrapolation (equivalent to the use of
one-sided (backward) first order approximation of derivatives at the boundary points)
of all velocity components used in this study seems to work well for the solved test
case. The possibility of using the homogeneous Neumann condition for the tangential
components of velocity (while keeping the extrapolation for the normal one), was
successfully tested. It has only marginal (but yet visible) effect on the solution close to
the boundary. Its use however can be of some importance in the theoretical analysis
of the model.
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THE END
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