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Particles in turbulence

(solid inclusions, drops, bubbles)

In
tr

o
d

u
c

ti
o

n



Lagrangian description of particles motion by a force balance:

FP (force due to the particle) = ???

Turbulent transport of small (d < h) inclusions
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Basset-Boussinesq-Oseen equation (spherical solid particle)

Boussinesq , C. R. Acad. Sci. Paris 1885; Basset,1888

(revisited by Gatignol, J. Mech. Theor. Appl. 1983; Maxey & Riley, PoF 1983)

= Fluid acceleration + Stokes drag + Added mass + History force + Buoyancy

Expression derived assuming a Stokes flow

at the particle scale: Rep = 2r|u-v|/n << 1 !!!

Turbulent transport of small (d < h) inclusions
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In the limit of small, spherical, very dense particles, rp/rf >> 1

(e.g., sand in air, water droplets in air, …)

→

Turbulent transport of small (d < h) inclusions
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Stokes number

• St<<1: particle ~ fluid tracer

• St ↑: particle inertia ↑

Ireland & Collins

= tp / th



• Cold clouds (top < 0°C) contain ice particles.

• For , these particles

are shaped like plates.
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Ice particles in cold clouds

W. Brune (after Lamb and Verlinde)

https://apollo.nvu.vsc.edu



Settling, orientation, collisions and 
aggregation of particles in cold clouds
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• Ice crystals orientation

→ EM waves (light) reflexion, albedo

https://www.atoptics.co.uk/halo/lpil.htm

See also Bréon & Dubrulle, JAS 2004.

• Collision and aggregation of ice crystals

→ formation of graupels



• Determination of the crystals orientation and settling velocity, and of their

collision rate, in turbulent conditions and with gravity.

Direct numerical simulation of an idealized system.

Purpose of the study
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• Assume that the crystal is a thin oblate ellipsoid of revolution (spheroid):

c << b=a.

b ≡ a/c

• Small (a < h), heavy (rp >> rf) and spheroidal particle.

• Equation of motion ? Force and torque acting on the spheroid ?



Equations of motion of the spheroids:

the role of fluid inertia



Equations of motion of the spheroids
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• Translational and rotational dynamics of spheroidal particles in turbulence:

For particles ≠ fluid tracers, need to write equations of motion

mp dv/dt = hydrodynamic force + buoyancy

Ip dw/dt = hydrodynamic torque

• Using Stokes approximation: hydrodynamic force = Stokes force

hydrodynamic torque = Jeffery’s torque

(in practice if r << h)

For a spherical object:

First effect of fluid inertia:



• : anisotropic resistance tensor, expressed in the eigenframe of the particle

• R : rotation matrix (laboratory frame → particle eigenframe)

• u: fluid velocity

vC: particle velocity

Translational motion (Stokes)
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• Angular momentum: (Jeffery, 1922)

• Orientation of the spheroid:

dR/dt = W . R

W : angular velocity of the particle (in its reference frame !)

Rotational motion (Stokes)
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Orientation statistics
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• Integration of the resulting set of equations for particles suspended in a turbulent flow

(Gustavsson et al, 2014; Siewert et al, 2014a,b; Gustavsson et al, 2017; Jucha et al, 2018;

Naso et al, 2018):

If Ws (settling velocity) > U0 (fluid velocity), the orientation distribution is biased (“vertical”):

Settling of spheroids in a turbulent flow:
orientation distribution calculated numerically

using Stokes torque

Prolate (rod-like):

nznz

P(nz)P(nz)

increasing

settling velocity

increasing

settling velocity

Oblate (disk-like):

g



• Experimental results:

* Lopez & Guazzelli, PRF 2017: rods in a 2D laminar flow

→ “horizontal” settling

* Kramel, PhD 2017: rods in turbulence

→ “horizontal” settling

* Roy et al, JFM 2019; Cabrera et al, 2021: rods in quiescent fluid

→ “horizontal” settling

Results opposite to those obtained by DNS in turbulent flows using Stokes approximation !

First effect of fluid inertia
on the rotational motion of settling spheroids

g

• Fluid inertia correction on rotational motion of spheroids recently derived for arbitrary aspect 

ratios (Dabade et al, JFM 2015).

Problem: fluid-inertia torque ~ Stokes torque !!!

This inertial correction → “horizontal” settling.

• Determine the conditions under which fluid inertia can be neglected for the angular dynamics of 

spheroids settling in turbulence.
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Angular motion of spheroids

“Stokes” contribution

(Jeffery, 1922)

Hydrodynamic torque:

Contribution due to fluid inertia

for a particle moving steadily

in a homogeneous flow

(Dabade et al, 2015)

• Estimate the ratio :

*                                  : Stokes expected to dominate (“vertical” settling if Ws > U0)

*                                  : inertia expected to dominate (“horizontal” settling if Ws > U0)
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• NB: Fluid inertia can also induce corrections due to shear (Candelier, Mehlig & Magnaudet,

JFM 2019) and unsteadiness.



Evaluation of the ratio

• For very flat disks (aspect ratio b << 1) and for thin rods (5 ≤ b ≤ 100), it can be shown that:

~
: large scale

Reynolds number

of the flow
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• Therefore, in the high         regime, the fluid-inertia torque can be neglected (i.e.,       can be

small) only if               is small

→ orientation distribution nearly uniform

• The Stokes contribution can be neglected (                 ) simultaneously with a large ratio

→ biased “horizontal” distribution

• Therefore the orientation bias obtained in numerical works which neglect the fluid-inertia

torque (biased “vertical” distribution) cannot be observed at large         !!!

Sheikh, Gustavsson, Lopez, Lévêque, Mehlig, Pumir & Naso, JFM 2020

≡



• Transition from a uniform to a biased “horizontal” distribution observed at increasing      .

• Biased “vertical” distribution never observed.

• Analysis seems to be valid for any b.

Numerical results in homogeneous and 
isotropic turbulence

Prolate (rod-like): Oblate (disk-like):
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Settling and collisions

of ice crystals



• Generation of an idealized stationary, homogeneous and isotropic turbulent flow in a 

cubic box with periodic boundary conditions (pseudo-spectral method).

• 3 values of Rl (or e) considered:

Settling, orientation and collisions
of ice crystals: numerical setup

S
e

tt
li

n
g

a
n

d
 c

o
ll

is
io

n
s
 o

f 
ic

e
c

r
y

s
ta

ls

~ 25 cm



• Simulations designed for representing at best realistic situations in cloud conditions.

Physical parameters at                    (Pruppacher & Klett, 1997).

• Parameters common to all runs:

Physical parameters
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Physical parameters

w or w/o gravity.
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Broader orientation distribution at high e (turbulence) 

and small b (particle inertia).

Crystal settling: orientation statistics
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Parameter space for the orientation 
distribution

Theoretical modeling and numerical

statistical model for orientation 

statistics as a function of b,

St = tp / th (Stokes number)

and Sv = gtp / uh (settling number).

Gustavsson, Sheikh, Naso, Pumir & Mehlig, 

J. Atm. Sci. 2021
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Settling velocity conditioned on orientation

Two particles very close to each other may have a significant velocity difference, 

provided that they have different orientations → consequences for the collision 

rate…
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• Without gravity, K increases with b and e (particle inertia), ~ spheres.

• Behavior less trivial in the presence of gravity.

Collision kernel
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Pumir & Wilkinson, ARCMP 2016



Turbulence: tracer particles

brought together by velocity 

gradients.

Saffman & Turner, JFM 1956

Collision mechanisms
for settling anisotropic particles

Differential settling: faster

spheroids fall on slower ones.

Jucha et al, PRF 2018

Particle inertia: particles from

different locations collide due 

to the « sling effect ».

Falkovich & Pumir, JAS 2007
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• Saffman-Turner (K ~ 3.10-5 cm3/s; Dvr ~ a / th) for b ≥ 0.01.

• When g ≠ 0, differential settling for b = 0.005.

Collision kernel
e = 1 cm2/s3; Rel = 56 (St < 0.04)
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• Saffman-Turner (Dvr ~ a / th) for b = 0.005.

• Inertial effects (St ~ 0.6) for b ≥ 0.01.

Collision kernel
e = 246 cm2/s3; Rel = 150 (St = 0.1-0.6)
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Red: Saffman-Turner

Green: differential settling

Blue: inertial effects

Collision regimes in the (Sv, St) plane
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St = tp / th (Stokes number)

Sv = gtp / uh (settling number)



Summary - Discussion



Take-home message (orientation, settling and collisions of ice crystals in clouds):

• Our results improve the predictions of orientation fluctuations of earlier works (Cho et al,
J. Atmos. Soc. 1981; Klett, J. Atmos. Sci. 1995), and are consistent with real observations.

• The settling velocity of ice-crystals strongly depends on their orientation.

• The resulting differential settling can play a crucial role in the collisions process.
Collisions driven by three mechanisms: fluid velocity gradients, differential settling, effects of
particle inertia.
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Take-home message (rotational motion of settling spheroids):

• In a turbulent flow, heavy spheroids can only settle either with a random orientation

or preferentially horizontally. Neglecting the fluid-inertia torque may lead to wrong results !

• In laminar flows (not shown here), the three orientation regimes can be observed (uniform

distribution, “vertical”, “horizontal”). The limit                   requires some care.

• Our estimates were derived for very flat disks (aspect ratio b << 1) and for thin rods

(5 ≤ b ≤ 100), but our numerical results show that they are also relevant for moderate values of b.
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Limitations of the present approach:

• “One-way coupling”.
• “Ghost collision” approximation.

• Simplified crystal geometry, homogeneous mass density.

• Equations of motion valid for small Rep.
Effects of shear and unsteadiness neglected.

Perspectives:

• Prolate spheroids (                                       ).

• Investigating further the collision mechanisms when particle inertia is dominant.

• Collisions between ice crystals and supercooled water droplets
coexisting in mixed phase clouds.

W. Brune (after Lamb and Verlinde)


