Atmospheres and their numerical treatments in astrophysics

Rolf Walder & Doris Folini

Centre de Recherche Astrophysique de Lyon (CRAL), ENS-Lyon, UMR 5574, France

3D stellar turbulent convection (J. Pratt)

Outline

- 1. Atmospheres : from planets to neutron stars and black-holes
- 2. Ordinary stars: insights and numerical challenges
- 3. A fully implicit scheme
- 4. A well-balanced scheme
- 5. The case of overshooting and lithium depletion on the sun
- 6. Conclusions

Earth from 45'000 km distance

Image taken by Apollo 17, December 7, 1972, image credit: NASA

Stratified medium, but :

- Complex physics
- Secular evolution

<u>Climate change</u>: energy balance problem, energy input ≠ energy output. Current Top of Atmosphere (TOA) energy imbalance (Wild et al. 2012):

estimated at ~0.5 W/m² or ~0.15% of 340W/m² (TAO input)

- → small fraction of overall radiation → difficult to measure / compute
- → big effect when accumulated over (large) time → climate change

Many ingredients determine energy balance:

- Clouds
- Composition of gas
- Oceans
- Soil coverage / Plants
- Etc., etc.

Energy input from Sun is dynamically redistributed

Via atmosphere and ocean currents

Jupiter (representing here planets)

Atmospheric features

- Coherent structures (big red vortex / bands)
- Strong differential rotation with rigid strips

Physical processes

- Strong magnetic/electric fields
- From molecular to ionized gas
- Dust

Compact objects: White dwarfs, neutron stars and black holes

Ordinary stars like the sun: strong stratification

Atmosphere

Central Temperature

$$T_c = 15$$
 million K

$$T^* = 5700 \text{ K}$$

Central Density

1.5 10⁻⁶ kg/m³

Central Pressure

$$P_c = 10^{11} \text{ atm}$$

Numerical issues when simulating (large parts) of stars

Characteristics of a stelar flow:

- Global quasi-stationary equilibrium of stratification
- Secular time-scales: stars evolve on a time much larger than any primary time scale:
 - 1) Eddy turn-over time
 - 2) Dynamo action time
 - 3) Nuclear reaction time
- Interior: low Mach-number flows: v/a < 0.05
- Outer atmosphere: supersonic flows/shocks

We have developed two numerical tools to overcome some of these difficulties

- 1) A fully implicit, fully compressible code for (M)HD: MUSIC.
- 2) A well-balanced Scheme for the adaptive mesh numerical tool-kit A-MaZe.

MUlti-dimensional Stellar Implicit Code (MUSIC)

Taylor-Green-vortex : advection errors

Viallet, M.; Baraffe, I.; Walder, R.: *Towards a new generation of multi-dimensional stellar evolution models: development of an implicit hydrodynamic code*, Astronomy&Astrophysics, 531, id.A86, 2011.

Viallet, M.; Baraffe, I.; Walder, R., Comparison of different nonlinear solvers for 2D time-implicit stellar hydrodynamics,

A&A 555, id.A81, 2013.

Viallet, M.; Goffrey, T.; Pratt, J., Baraffe, I.; Geroux, C.; Popov, M.V.; Folini, D.; Walder, R., *A Jacobian-free Newton-Krylov method for time-implicit multidimensional hydrodynamics*, A&A 586, id.A153, 2016.

Rayleigh-Taylor-mode: one out of many tests

Goffrey, T.; Pratt, J.; Viallet, M.; Baraffe, I.; Popov, M.V.; Walder, R.; Folini, D.; Geroux, C.; Constantino, T., *Benchmarking the Multi-dimensional Stellar Implicit Code MUSIC*, Astronomy&Astrophysics 600, id.A7, 2017.

A well-balanced scheme for the simulation tool-kit A-MaZe

For a stationary stratification, a necessary condition is (take momentum Euler equation, $\partial_t = 0$, $\mathbf{v} = 0$, $\mathbf{p} = 0$; gravitational potential, $\mathbf{p} = 0$; pressure, $\mathbf{p} = 0$; density

$$\nabla p = -\rho \nabla \phi$$

This must also be fulfilled numerically, otherwise, a velocity field develops!

Unfortunately, any standard finite volume discretization based on cell-centered variables (ρ , \mathbf{v} , E) violates the discrete form of this equation !

There many suggestions how to 'repair' this. Most of the proposed well-balanced schemes are complicated to implement, work only for a particular EOS, and lead to substantial more CPU costs.

Popov, Walder, Folini, Goffrey, Baraffe, Constantino, Geroux, Pratt, Viallet, & Käppeli *A well-balanced scheme for the simulation tool-kit A-MaZe: implementation, tests, and first applications to stellar structure* A&A 630, A129 (2019)

have implemented an idea by Käppeli&Mishra (2016) – together with an **essential** modification of the energy equation.

Example 1d: isentropic gas

EOS: $p(\rho, s) = exp(s/c_v) \rho^{\gamma}$ with $s = s0 = R_{\alpha as} / (\gamma - 1) ln(p_0 / \rho^{\gamma}_0)$.

Stationary Solution:
$$\rho(x) = \left(\rho_0^{\gamma - 1} - e^{-s/c_v} \frac{\gamma - 1}{\gamma} g \, x\right)^{1/(\gamma - 1)}$$

WB-scheme: solution is maintained to machine precision

Classical Finite Volume scheme (HHLC Riemann solver, 2nd order in time)

Lane-Emden Polytrope

Standard scheme: axi-symmetric 256 2 mesh after 300 τ_{s} .

A convection-like velocity field develops. Shown is absolute velocity (from purple to white) with velocity arrows (rainbow colored according to magnitude) sound speed ranging from 0.76 to 1.39.

Well-balanced scheme:

3D Cartesian mesh (128 3 , star in a box) Preserves polytrope to machine precision (300 $\tau_{\rm s}$).

A step towards real atmospheres (test cases of Hurlbert (1984/1986)

- Full, compressible full Navier-Stokes, including heat-transfer by radiation.
- The computational domain is covered by a uniform 2D mesh of $N_x \times N_v = 160 \times 40$.
- Steady convective cells for different stratifications χ (= $\rho_{\rm b}/\rho_{\rm t}$)

$$X = 1.5$$
; $R = 310 R_{c}$, $R_{c} = 400$

$$K_{H} = 7.1 \times 10^{-3}, \ \mu = 2.8 \times 10^{-3}$$

$$X = 21$$
; $R = 1480 R_c$, $R_c = 750$

$$K_{_H} = 1.1 \times 10^{-3}, \, \mu = 4.5 \times 10^{-4}$$

Zonal flows & convection

3D Slabs: transition to turbulent convection

 $\begin{array}{l} X = 21; \quad R = 1480 \; R_{_{C}}, \; R_{_{C}} = 750 \\ K_{_{H}} = 1.1 \times 10^{_{-3}}, \; \mu = 4.5 \times 10^{_{-4}} \end{array}$

Vertical energy fluxes

$$F_{\rm C} = -\overline{c_{\rm p} \rho v_y (T - \overline{T})},$$

$$F_{\rm K} = -\frac{1}{2} \overline{(\rho v_i v_i) v_y},$$

$$F_{\rm R} = K \frac{\partial \overline{T}}{\partial y}.$$

Stars in some more details: the Sun

Tachocline

Tachocline: two-fold boundary

- Between the interior region where energy is predominantly transported by photons and the exterior region where energy is transported by convection.
- Between rigidly rotating inner region and lattitude-dependent rotation of the outer region.

Location/Size:

```
r/R^* = 0.693\pm0.002 / dr/R^* = 0.039\pm0.013 (Charbannneau et al., ApJ 527, 1999) dr/R^* = 0.019\pm0.001 (Elliot & Gough, ApJ 516, 1999)
```

Fully developed turbulent convection shown: velocity (contours and arrows)

Study of convective penetration in 2D and 3D (MUSIC)

Pratt et al., Extreme value statistics for two-dimensional convective penetration in a pre-main sequence star, **Astronomy&Astrophysics**, **604**, **id.A125**, **2017**.

Pratt et al., Comparison of 2D and 3D compressible convection in a pre-main sequence star, Astronomy&Astrophysics, 638, id.A15, 2020.

Probability density functions of penetration depth ro determined by the first zero of the vertical kinetic energy flux (10 eddy turnover times)

Penetration depth at fixed - arbitrary time

Penetration depth: ~ 0.06 R*

Overshooting and Lithium depletion

Long lasting problem:

on the surface of the Sun (as, in fact, of all low-mass stars) one observes that lithium is depleted against of what is observed in solar system meteorites.

If you look at clusters of low-mass stars, one observes that the depletion depends on the rotation rate of the star: more rotation enforces a stronger depletion.

Lithium is extensively burned in the early, pre-main sequence time of stellar life.

Baraffe et al. *Lithium Depletion in Solar-like Stars: Effect of Overshooting Based on Realistic Multidimensional Simulations*, Astrophysical Journal 845, id L6, 1017.

Conclusions

- Stratified flows in astrophysics are everywhere present : stars and planets
- Within ERC TOFU, we have developed two performative tools to study such flows:
 - 1) Fully implicit, fully compressible code MUSIC
 - 2) Well-balanced module (can be used in any standard cell-centered finite volume code)
- First applications:
 - 1) Study of model problem with mixed energy transport by radiation / convection
 - 2) Study of an entire star with an upper convective zone and an interior radiative zone
 - 3) Overshooting
 - 4) In combination with 1D stellar evolution code: very plausible suggestions of the observed lithium depletion in the solar atmosphere.