Atmospheres and their numerical treatments in astrophysics
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Earth from 45’000 km distance

Image taken by Apollo 17,
December 7, 1972,
image credit: NASA

Stratiflied medium, but :
* Complex physics
» Secular evolution

Climate change: energy balance problem, energy input # energy output.
Current Top of Atmosphere (TOA) energy imbalance (Wild et al. 2012):

estimated at ~0.5 W/m? or ~0.15% of 340W/m? (TAO input)

— small fraction of overall radiation - difficult to measure / compute
- big effect when accumulated over (large) time - climate change
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Many ingredients determine
energy balance:
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Jupiter (representing here planets)

optical

Physical processes

* Strong magnetic/electric fields
* From molecular to ionized gas
* Dust

Atmospheric features
* Coherent structures (big red vortex /| bands)
* Strong differential rotation with rigid strips



Compact objects : White dwarfs, neutron stars and black holes
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Ordinary stars like the sun : strong stratification
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Atmosphere

e Central Temperature

Te = 15 million K T*=5700 K

e Central Density

1.5 10° kg/m? 1.5 10° kg/m?

e Central Pressure
P. = 1011 atm



Numerical issues when simulating (large parts) of stars

Characteristics of a stelar flow:
* Global quasi-stationary equilibrium of stratification

e Secular time-scales : stars evolve on a time much
larger than any primary time scale:

1) Eddy turn-over time
2) Dynamo action time
3) Nuclear reaction time
* Interior: low Mach-number flows: via < 0.05

* Outer atmosphere: supersonic flows/shocks

We have developed two numerical tools to overcome some of these difficulties

1) A fully implicit, fully compressible code for (M)HD : MUSIC.

2) A well-balanced Scheme for the adaptive mesh numerical tool-kit A-MaZe.




MUIti-dimensional Stellar Implicit Code (MUSIC)

Taylor-Green-vortex : advection errors
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Rayleigh-Taylor-mode : one out of many tests

MUSIC Athena * Same height of spike
 Differences in secular instabilities
 Differences in bubble deepness

e Same mixing region/ratio
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A well-balanced scheme for the simulation tool-kit A-MaZe

For a stationary stratification, a necessary condition is
(take momentum Euler equation, 9, = 0, v=0, p : gravitational potential, p: pressure, p : density

Vp=-pVo

This must also be fulfilled numerically, otherwise, a velocity field develops!

Unfortunately, any standard finite volume discretization based on cell-centered variables (p, v,
E) violates the discrete form of this equation !

There many suggestions how to ‘repair’ this. Most of the proposed well-balanced schemes
are complicated to implement, work only for a particular EOS, and lead to substantial more
CPU costs.

Popov, Walder, Folini, Goffrey, Baraffe, Constantino, Geroux, Pratt, Viallet, & Kappeli
A well-balanced scheme for the simulation tool-kit A-MaZe:

Implementation, tests, and first applications to stellar structure

A&A 630, A129 (2019)

have implemented an idea by Kappeli&Mishra (2016) — together with an essential
modification of the energy equation.



Example 1d : isentropic gas

EOS: p(p, s) = exp(s/c) p* withs=s0=R__/(y = 1) In(p, /p*, ).
. . v—1 —s/c y _ 1
Stationary Solution: p(x)=|py, —e """ ——gux
Y
WB-scheme : solution is maintained to machine precision

Classical Finite Volume scheme (HHLC Riemann solver, 2" order in time)
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Lane-Emden Polytrope

Standard scheme:
axi-symmetric 256> mesh after 300 T_.

A convection-like velocity field develops.
Shown is absolute velocity (from purple to
white) with velocity arrows (rainbow
colored according to magnitude)

sound speed ranging from 0.76 to 1.39.
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Well-balanced scheme:
3D Cartesian mesh (1283, star in a box)

Preserves polytrope to machine precision
(300 1).




A step towards real atmospheres (test cases of Hurlbert (1984/1986)

* Full, compressible full Navier-Stokes, including heat-transfer by radiation.
« The computational domain is covered by a uniform 2D mesh of N xN = 160x40.
« Steady convective cells for different stratifications x (=p,/p,)

X=15 R=310R_, R_=400
K,=7.1x10° p=28x107°

X=21; R=1480R_, R. =750
K,=11x10° puy=4.5x10"

e Zonal flows & convection

00 020 040 060 080 0.0 0.20 0.40 0.60 0.80




3D Slabs: transition to turbulent convection

Vertical energy fluxes
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Stars in some more details: the Sun




Flow of energy

Energy transport
via convection
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Tachocline

Tachocline : two-fold boundary

* Between the interior region where energy is predominantly transported by photons and
the exterior region where energy is transported by convection.
* Between rigidly rotating inner region and lattitude-dependent rotation of the outer region.

Location/Size :
r/R* = 0.693+0.002 / dr/R* = 0.039£0.013 (Charbannneau et al., ApJ 527, 1999)

dr/R* = 0.019+0.001 (Elliot & Gough, ApJ 516, 1999)



Fully developed turbulent convection A-MaZe
shown: velocity (contours and arrows)
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Study of convective penetration in 2D and 3D (MUSIC)

N, x N, =780x260 ' TR N x N, x N, =780x260x260
2D-Axisymmetric R "

Vorticity:

lighter color
indicates higher
vorticity magnitude

Pratt et al., Extreme value statistics for two-dimensional convective penetration in a pre-main sequence star,
Astronomy&Astrophysics, 604, id.A125, 2017.

Pratt et al., Comparison of 2D and 3D compressible convection in a pre-main sequence star,
Astronomy&Astrophysics, 638, id.A15, 2020.



ttll

15

10

Probability density functions of
penetration depth ro determined by
the first zero of the vertical kinetic
energy flux (10 eddy turnover times)
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Overshooting and Lithium depletion

Long lasting problem:
on the surface of the Sun (as, in fact, of all low-mass stars) one observes that lithium is
depleted against of what is observed in solar system meteorites.

If you look at clusters of low-mass stars, one observes that the depletion depends on the
rotation rate of the star: more rotation enforces a stronger depletion.

Lithium is extensively burned in the early, pre-main sequence time of stellar life.
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Baraffe et al. Lithium Depletion in Solar-like Stars: Effect of Overshooting Based on
Realistic Multidimensional Simulations,
Astrophysical Journal 845, id L6, 1017.



Conclusions

 Stratified flows in astrophysics are everywhere present : stars and planets
* Within ERC TOFU, we have developed two performative tools to study such flows:

1) Fully implicit, fully compressible code MUSIC

2) Well-balanced module (can be used in any standard cell-centered finite volume code)
* First applications:

1) Study of model problem with mixed energy transport by radiation / convection

2) Study of an entire star with an upper convective zone and an interior radiative zone

3) Overshooting

4) In combination with 1D stellar evolution code:
very plausible suggestions of the observed lithium depletion in the solar atmosphere.



