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Remarkable features of the Lagrangian dynamics

» Non-gaussian PDF
» Scale separation for the correlation

» Asymmetry of the power received/given =
irreversibility

» Anomalous scaling of the velocity spectra
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Effective dynamics

Navier-Stokes eq.: Collective + dissipative effects

1

o= o v < o) = - [ oot/

1st hypothesis of Kolmogorov: Turbulence is universal

= Stochastic model for a fluid-particle dynamics:
effectively account for the interactions with all the other particles

da; = M;dt + Didej 5 du; = a;dt

Model based on the conditional statistics of acceleration
> Connection with "intermittency" = (a*[¢) ~ &*/2p /2

> Stationary dynamics = (a’|K) =7 (Power law ? K3 or K*5 or K*6 ?)
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Effective dynamics

Navier-Stokes eq.: Collective + dissipative effects

1
47T/8u,8uj( )dy/r

a; = —0ip + V@?jui i p(x) =

1st hypothesis of Kolmogorov: Turbulence is universal

= Stochastic model for a fluid-particle dynamics:
effectively account for the interactions with all the other particles

da; = M;dt + Di]'de 5 du; = a;dt

Model based on the conditional statistics of acceleration
> Connection with "intermittency" = (a?|e) ~ &*/2y /2
> Stationary dynamics = (a’|K) =7 (Power law ? K3 or K*% or K*6 ?)

> (a’|e, K) =? never studied!
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Doubly conditional acceleration statistics
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Doubly conditional acceleration statistics
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(a’le, K) = A(a’|e) exp(aK/(K))
» Exponential dependence with K (not a power law) with growth rate « = 1/3

3/2
2
(from independence between fluct. of K and € and u Gaussian: A = (1 — ga) ~ 0.69)

» Scaling law for (a®le) ?
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Doubly conditional acceleration statistics

(a%|e, K) for K fixed (a®|e, K) for & fixed

Aexp(aK/(K))

2
g

{a®|e, K)/a?

(a’[e, K) = A(a®|e) exp(ak/(K))

» Exponential dependence with K (not a power law) with growth rate « = 1/3
5 3/2

(from independence between fluct. of K and € and u Gaussian: A = (1 — ga) ~ 0.69)

» Scaling law for (a®le) ?
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Acceleration conditioned on dissipation

Scaling law for (a?|e)

Barenblatt's Incomplete similarity:

f(e/(e), Rex) = B (e/(e))”

10 B = Bo + B1/In(Rey)
o B = B1/In(Rex)
&
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= X321 "
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e/(e) )
2 =
(a’le) :
53/21/_1/2 - f(8/<€>7 RG)\) )
Intermittency = persistence of viscous -
effects - ’

Ine/(c)

DNS with Rey = 40 to 680
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Acceleration conditioned on dissipation

Scaling law for (a?|e)
We can go further and obtain a
o . . 2, 2
self-similar form introducing ag/a; =

(@®le) _
28/2,-1/2 f(e/(e), Rex) lir]%(aQ\a)/af, ~ Tp/TL ~ Re}
e—

Intermittency = persistence of viscous

effects
Barenblatt's Incomplete similarity:

f(¢/(e), Rex) = B(e/(e))”
B = Bg + B1/In(Rey)
B = B1/In(Rey)
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Acceleration variance
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Acceleration as a multiplicative process

Finally we obtain:

(a2|57K>/a3] = Cexp(aK/(K)) (é)’y C=AB;y=3/2+8

What is the physical interpretation ?

» Locally-space-averaged dissipation as a multiplicative process:
n

8[:<6>H€i L 0=LA\"
=1

» Similarly, multiplicative process for coarse-grained acceleration:

- 1
a% :a(Q]HOi with 0; = exp (%5u?+’yln§i) =
i=1

n 1 n
a? :agexp (% 5uf+'yZln§i)
i=1 i=1

= Scale similarity with sweeping effects from eddies of size ¢; to balance the intense
local acceleration induced by g

9/17



Acceleration as a multiplicative process

Finally we obtain:

(a?|e, K)/a% = Cexp(aK/(K)) (é)7 C=AB;y=3/2+8

What is the physical interpretation ?
» Locally-space-averaged dissipation as a multiplicative process:
n
= €>H5i . f=LA"
i=1

» Similarly, multiplicative process for coarse-grained acceleration:
n

1
a% ZGSHQi with 0; = exp (%Eu%—k'ylnﬁi) =

with n = In(n/L)/In()\) ~ In Re, a? aO exp ( Z 2u1 + Z In fz)

R/—/
K Ine/(e)

=> Scale similarity with sweeping effects from eddies of size ¢; to balance the intense
local acceleration induced by ¢
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Stochastic dynamics of a fluid particle

We propose a stochastic model for the tracer using 4 assumptions:

» H1: Assume the dynamics can be expressed as a closed model (universality)
da; = Midt + D;;dW; ; du; = a;dt

Ito Formula =

da® = (2a:M; + D;;Dij) dt + 2a;Dy;dW,

» H2: The instantaneous acceleration is given by the doubly conditional
variance (the remaining degree of freedom can be discarded)

2—(12 i ’yeX OZL
“= "C(<s>) p( <K>>

dK de (v —1) de?
2 —_ JE— S —
<a (K) +7 € + 2 g2

With dK = a;u;dt = Pdt and de = elldt + eXdW

Taylor expansion: da’® =a

: —1
da® = a? {“p + AT + =Dl g4 ~a?SdW

(K) 2

= Identification between the two equations
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Stochastic dynamics of a fluid particle

» H3: Introduction of a non-diagonal diffusion tensor:

D;j = c16ij + C2€ijpwr ; Wk = €ijkUiA

with the "maximum winding hypothesis":

2
D;; = A/ ’YZZQ {\/a%&j + \/ a?\,eijkbk}

» H4: Dissipation rate along the trajectory is given by the non-Markovian
log-normal process proposed by L. Chevilard
Logarithmic correlation of € = cascade picture

2

€ o? Te 2 o o
ds—s(—ln<€>+2A2 E—A +KFTE dt/TE-f—E ATT»,]dW
——

I =

with o2 the variance of Ine: o2 ~ 3/81n Rex /10

¢
and IT" the non-Markovian term: I' = f%/ (t—s+ Tn)73/2dW(S)

(A a normalization constant)
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(no free parameters: they are all determined from DNS!)
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Finally we obtain our stochastic equation
K 2
5.2P + —) — 4.2d%u;

. [0
K ai(
[o2 ] /= =y
+ ? |: a%(sij + a%vﬁijkbk} de
n

One realization at Re) = 1000

; du; = a;dt

Stochastic dynamics of a fluid particle
Te
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Acceleration variance

Evolution of the acceleration variance vs Re
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Stochastic dynamics of a fluid particle

model Rex = 400 — 9000
+ comparison from DNS Re, = 400

Lagrangian velocity spectra
Deviation from Hinze spectra, anomalous
scaling
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Stochastic dynamics of a fluid particle

Model for Rey = 400 — 9000
+ comparison from DNS Re, = 400

Increase of the velocity increments
Non gaussian PDF flatness with the scale and the

Reynolds number
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Stochastic dynamics of a fluid particle

—(P?) and (P*) vs Rey

102 103 104
(P?)/(e)? ~ Rey? and —(P*)/(e)® ~ Ré3

Skewness of the mechanical power
= time irreversibility of the dynamics

(connected to non-markovianity + non-diagonal diffusion)
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Summary / Conclusion

DNS of Navier-Stokes:
~
> Doubly conditional variance: (a’|e, K)/a; = Cexp(aK/(K)) (<6>>
€
» Multiplicative process for the acceleration accounting for the sweeping
effects
» a =1/3 and for 2D ? or non isotropic turbulence ?

> Relation between force/power/energy

Stochastic dynamics of fluid particles:
» Only 4 reasonable hypothesis
» Non-gausssianity, long-range correlations, anomalous scaling and time
irreversibility.
» Good agreement with the DNS (no free parameters).

» What next ?
> Extension to non-stationnary / non-homogenous turbulence ?
» Improve the high frequency/dissipative part
» Theoretical /mathematical analysis of the model
> Application to LES / RANS modeling and "multiphysics" coupling

You can check the preprint: https://hal.archives-ouvertes.fr/hal-03408311
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Calculation of the history integral
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