Turbulent transitions in fusion plasmas

Wesley AGOUA (LMFA), Wouter Bos (LMFA), Jorge Morales (CEA), Benjamin Favier (IRPHE)

ERCOFTAC ASTROFLU V

08/12/2021

Wesley AGOUA (LMFA)

Turbulent transitions in fusion plasmas

Image: A math the second se

PHD subject : Turbulent transitions in fusion plasmas

- Context : Preparation of the ITER experiment
- Purpose : Increase the performance of a Tokamak by improving plasma confinement
- Goal of the thesis : Understanding of the Low-High transition observed in Tokamaks which improves confinement

Wesley AGOUA (LMFA)

The tokamak (toroidal camera with magnetic coils)

 $\label{eq:magnetic confinement: Fuel heated and maintained confined by magnetic fields in a chamber : tokamak, stellarator, RFP$

Deuterium-tritium plasma confined by a toroidal and inhomogeneous magnetic field

 \Longrightarrow Drift problem : Particles derived to the edge of the chamber

 \implies A poloidal magnetic field is added

イロト イヨト イヨト イヨト

Produced power of 500MW for 50MW of power introduced

 \implies efficiency ratio Q = 10

Plasma maintained at 150 million degrees for at least 400 seconds : neutral beam injection, radio frequency heating (ion and electron cyclotron resonance heating)

ASDEX experiment,1982

Transition between two confinement states, Low confinement and High confinement.

0.3

turbulent kinetic energy

Dramatic decrease of the turbulence in H confinement

 \Rightarrow Energy confinement time multiplied by two \Rightarrow Better energy efficiency

Some phenomena have been observed :

- Decrease of the turbulent transport, particularly at the edge of the plasma.
- High temperature gradient at the edge of the plasma.
- \implies Formation of an Internal Transport Barrier (ITB)

Main explanations

- Shear flow induced by the electromagnetic flow.
- Formation of zonal flows

Wesley AGOUA (LMFA)

H-mode

DIVERTOR D

temps

We propose to study a transition between twodimensional turbulent states in axisymmetric flow : 2D2C and 2D3C with two and three velocity components respectively (PHD subject of Z.Qin)

Transition between two 2D turbulent states related to the anisotropy of an imposed forcing

Goal :recover this transition in a toric geometry and find a relation with the loss of confinement observed in tokamaks

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Geometry

Study of a two-dimensional system (r, θ) with three velocity components (r, θ, ϕ) : The flow is studied in a poloidal cross-section of a tokamak modelled as a disk

 $\mathbf{u} = \mathbf{u}_{pol} + \mathbf{u}_{tor}$ avec $\mathbf{u}_{pol} = \mathbf{u}_r + \mathbf{u}_{\theta}$ et $\mathbf{u}_{tor} = \mathbf{u}_{\phi}$

Numerical tools

Numerical simulations with Nek5000 (spectral element method)

Turbulent transitions in fusion plasmas

Navier Stokes equation + forcing $\textbf{F} = \textbf{F}_{\textbf{pol}} + \textbf{F}_{\textbf{tor}}$:

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u}.\nabla)(\mathbf{u}) = -\frac{1}{\rho}\nabla P + \nu\Delta \mathbf{u} + \mathbf{F}$$

• Scalar field T(r) such that

$$\frac{\partial T}{\partial t} + (\mathbf{u}.\nabla)(T) = \kappa \Delta T + S(r)$$

with S(r) source term

 Poloïdal forcing induced by the scalar field

$$\mathsf{F}_{\mathsf{pol}} = c_{
ho} \mathcal{T}(r) \mathbf{e}_{\mathsf{r}} - eta r \mathbf{e}_{\mathsf{tor}} imes \mathbf{u}_{\mathsf{pol}}$$

• Toroïdal forcing at the same place : $\mathbf{F}_{tor} = C_t \left(B(r_{min}, r_{max}) u_{\phi} - \tau \frac{\overline{u_{\phi} y}}{y} \right)$

Scalar field T(r)

イロト イ団ト イヨト イヨ

Friction $\beta r \mathbf{e_{tor}} \times \mathbf{u_{pol}}$ added :

Stream function field without friction

Stream function field with friction

< □ > < □ > < □ > < □ > < □ >

Transition

Highlighting of the transition with the evolution of the parameter $\gamma = E_t/E_p$ Variation of the anisotropy of the forcing $(\xi \approx c_t/c_p)$

Transition from a 2D2C state $(Et/E_p = 0)$ to a 2D3C state (2D3C)

Relation between γ and ξ

Visualisation of the transition with the energy

< □ > < 同 > < 回 > < Ξ > < Ξ

Structures of the flow are modified during the transition

Stream function field in H mode

user: agouan Wed Dec 8 10:29:13 2021

Stream function field in L mode

イロト イヨト イヨト イヨト

Toroidal perturbations generated by the scalar field **Idea** : violation of the axisymmetry $\Rightarrow T$ slightly advected by the toroidal

$$(\mathbf{u}.\nabla)(T) = u_r \frac{\partial T}{\partial r} + \frac{u_\theta}{r} \frac{\partial T}{\partial \theta} + \frac{u_\phi}{\partial \phi} \frac{\partial T}{\partial \phi}$$

メロト メタト メヨト メヨト

Introduction of a scalar field Θ in the center of the disk.

Study of the relation between this scalar field's temperature and the anisotropy of the forcing.

Consistent results : drop of the temperature in L mode \implies Weaker confinement for $E_t/E_p > 0$

Radial profile of the temperature in L mode and H mode

イロト イヨト イヨト イヨ

Link with the LH transition

Drop of temperature can be linked to the transition to the 2D3C state caracterised by E_t/E_p

Relation of γ and the temperature of the tracer at the center of the disk with the control parameter $\xi.$

・ロト ・日下・ ・ ヨト・

Résults

- A 2D2C-2D3C transition occurs in a toric geometry
- This transition can be related to a loss of confinement in a torus

Perspectives

- Improvement of the forcing
- Spectral study of energy transferts (GHOST)
- Spontaneous generation of zonal flows?
- Hysteresis ?

イロト イヨト イヨト イヨト