

ASTROFLU Seminar 8 Dec 2021



# A **Machine Learning** approach for Monitoring the **Plasmaspheric Mass Density** using Ground-Based Measurements

## <u>R. Foldes<sup>1,2</sup></u>, A. Del Corpo<sup>1</sup>, E. Pietropaolo<sup>1</sup>, M. Vellante<sup>1</sup>, R. Marino<sup>2</sup>, E. Lévêque<sup>2</sup>

<sup>1</sup>Universitá de L'Aquila, Dipartimento di Scienze Fisiche e Chimiche <sup>2</sup>École Centrale de Lyon, Laboratoire de Méchanique des Fluides et d'Acoustique, CNRS







#### **§** Introduction:

Earth's Plasmasphere and Field Line Resonances Monitoring the Plasmasphere Dynamics: State of the art of FLRs identification

#### **§** Machine Learning Pipeline:

Data set Machine Learning Algorithms Models Comparison

#### **§ Results**:

Test set Global Results Latitudinal Variation Case Study: Geomagnetic Storm 1<sup>st</sup> June 2013



## **Earth's Plasmasphere**



Inner region of the Earth's magnetosphere, it is composed by plasma of ionospheric origin.



Streltsov A.V. and Mishin E.V., 2018

→ It is the most important region for the **Space Weather** 

- Composed by dense and cool plasma (*E* ~ 1 *eV*)
- Extends approx. from 1.5 to 6 Earth's radii
- Dominated by geomagnetic field, hence it co-rotates with Earth





## **Field Line Resonances**



Field Line Resonance (FLR) frequencies can be excited by the interaction between shear Alfvén modes and **MHD compressive waves**. This coupling can produce **standing waves** along a specific geomagnetic field line (*L*).

 $T_L \approx \int_{S_1}^{S_2} \frac{ds}{V_A(s)} = 2\mu_0^{1/2} \int_{S_1}^{S_2} \frac{\rho^{1/2}(s)}{B(s)} ds$  Eigenperiod *n*=1

where  $V_A$  is the Alfvén velocity and  $S_1(S_2)$  is the initial (end) point of the field line (*L*).

Assuming: 1. a geomagnetic model (*B*)
2. a functional form for the density (*ρ*)
3. the field line length

**FLR frequency** 

equatorial plasma density



Dipolar approx of the Geomagnetic Field



## **FLR Frequencies Identification**



frequency [mHz]

*State of the art:* **Gradient method** (Waters et al., 1991) from ground-based magnetometers (ULF measurements)

Assuming:

- 1. Eigenfrequency linearly decreases poleward for stations slightly separated in latitude (this is not true passing through the plasmapause)
- 2. Meridional aligned stations
- → Then it is possible to estimate the FLR frequency of the mid-point (MP) by computing the discrete Fourier cross-spectrum of the two signals.



frequency [mHz]

 Cross-Amplitude crosses unity with positive – (negative) slope

2. Cross-Phase has its maximum (minimum) value -



## **Field Line Resonances Monitoring**



48% 100 18°E 24°E

> European quasi-Meridional Magnetometer Array (EMMA) (~ 30 stations)

EMMA provides magnetic measurements with a resolution of 1s.

Real-time monitoring of the plasmasphere dynamics

Many authors created (semi-)automated tools for monitoring the plasmasphere via FLRs (Del Corpo et al., 2018; Wharton et al., 2018; Lichtenberger et al., 2013; Berube et al., 2003; Chi et al., 2013).

All the current methods rely on the **crossphase technique**.

All these methods require the human intervention





## **Machine Learning Approach**



#### Framework:

FLR frequencies are a powerful tool to sound the cold plasma in the inner magnetosphere. Cross-phase spectra contains sufficient information for estimating FLR frequencies from ground-based ULF measurements.

#### **Goal:**

Using Machine Learning (ML) methods to build an automated tool for estimating FLR frequencies from cross-phase spectra.





TRAINING

DSFC







TRAINING

DSFC





## **Raw Data & Target: Data Source**



The data set created by *Del Corpo et al. (2019)* contains **cross-phase spectra** and validated **FLR frequencies** (first harmonic) with a time resolution of 30 mins. and an average relative error at any latitude. The fundamental frequencies range from few *mHz* (MUO-PEL) to about 60 *mHz* (SUW-BEL).

- 4 station pairs (SUW-BEL, TAR-BRZ, OUJ-HAN and MUO-PEL)
- 176 non-consecutive days (between 2012 and 2017)
- 13 geomagnetic storms (e.g. St. Patrick's day storm, 2013)
- several different geomagnetic conditions
- about 4000 samples per stations pair





#### INPUT: Cross-phase spectra OUTPUT: validated FLR frequencies



## **Machine Learning Pipeline**







DSFC









TRAINING

DSFC





## Machine Learning Algorithms



For each pair of stations we evaluate 6 different ML algorithms typical used for regression problems.

**1. Kernel Methods**:

Kernel Ridge (KRR) and Support Vector Machine (SVR)

**2. Tree-based Methods:** *Decision Tree* (DTR)

#### **3. Ensemble Methods**:

Random Forest (RF), Light Gradient Boosting Machine (LGBM), Extreme Gradient Boost (XGB)



## **Machine Learning Pipeline**



TRAINING

DSFC





## **Model Comparison**



Results of the cross-validation procedure on the training set:

- Kernel, Tree-based and Ensemble methods have significantly different performances
- **Tree-based** methods result better in handling discrete-like data
- Ensemble methods are the most suitable with data set with a large number of features (200) wrt the number of samples (4000)







TRAINING

DSFC



## **Results 2: Global Results**



|      | R <sup>2</sup> | MAE<br>(mHz) | MAPE  | RMSE<br>(mHz) | CV Time<br>(s) | 50<br>40<br>30<br>[2]<br>[2]<br>[2]<br>[2] |
|------|----------------|--------------|-------|---------------|----------------|--------------------------------------------|
| KRR  | 0.613          | 2.42         | 0.128 | 3.9           | 2.83           | Estimated Freq. [mHz]                      |
| SVR  | 0.688          | 2.00         | 0.106 | 3.5           | 17.8           | imated                                     |
| DTR  | 0.828          | 1.00         | 0.057 | 2.6           | 1.82           | E 10                                       |
| RF   | 0.840          | 0.93         | 0.042 | 2.5           | 32.7           |                                            |
| LGBM | 0.878          | 0.98         | 0.052 | 2.3           | 46.6           | 5 5                                        |
| XGB  | 0.875          | 0.95         | 0.046 | 2.2           | 24.3           |                                            |

- Estimation error does not increase with increasing frequency (top panel)
- All models have higher estimation errors during nighttime (dark-grey area), or when one of the two footprints is nightside (light-grey area)





meaning that overestimation errors have a heavier weight.

At every *L* we can observe that the error is higher during nighttime

Relative estimation error of the four pairs of stations for six consecutive days.

- Error slightly increases with increasing *L* probably because of fuzzier cross-
- phase spectra
  - $f_{obs})/f_{obs}$ -0.40.8Average relative error is +1-2% from  $(f_{meth})$ 0.60.4*L*=2.1 to *L*=4.1, for MUO-PEL is 4.5% 0.20 -0.2-0.40.80.60.40.2







## **Results 3: Latitudinal Variation**



## **Results 4: Case Study**

DoY 151

25



DoY 152

Except for MUO-PEL, the estimation error **does not show** any dependence from the geomagnetic activity level.





#### ASTROFLU Seminar 8 Dec 2021



Conclusions and next steps...

- Machine Learning algorithms (especially supervised ensemble methods with a feature-based approach) resulted a powerful tool for <u>estimating FLRs</u> from cross-phase spectra.
- The algorithm performances showed a little dependence on the station latitude, but it is worth noting that the estimation error remains small even during highly disturbed geomagnetic conditions
   (→ Space Weather tool for monitoring the plasmasphere dynamics).
- In order to obtain more robust models/predictors it is necessary to train the algorithms on a **larger data** set and using more stations along the EMMA network.
- This is only a preliminary result for **evaluation purposes**. To create a completely automated tool we need for an additional step which determines when FLRs can be observed from signals.
- Our final goal is to create a single ML tool which includes all the EMMA stations (even other magnetometer array) and which is able to determine FLR frequency directly from spectrograms (CNN)



## References



- R. Foldes, A. Del Corpo, E. Pietropaolo and M. Vellante, *Assessing Machine Learning Techniques for Identifying Field Line Resonance Frequencies From Cross-Phase Spectra*, 2021, *JGR: Space Physics*
- J. Lichtenberger, M. A. Clilverd, B. Heilig, M. Vellante, J. Manninen, C. J. Rodger, A. B. Collier, A. M. Jørgensen, Jan Reda, R. H. Holzworth, R. Friedel and M. Simon-Wedlund, *The plasmasphere during a space weather event: first results from the PLASMON project*, 2013, *JSWSC*
- P. J. Chi, M. J. Engebretson, M. B. Moldwin, C. T. Russell, I. R. Mann, M. R. Hairston, M. Reno, J. Goldstein, L. I. Winkler, J. L. Cruz-Abeyro, D.-H. Lee, K. Yumoto, R. Dalrymple, B. Chen, and J. P. Gibson, *Sounding of the plasmasphere by Mid-continent MAgnetoseismic Chain (McMAC) magnetometers*, 2013, *AGU JGR*
- A. Del Corpo, M. Vellante, B. Heilig, E. Pietropaolo, J. Reda, J. Lichtenberger, *Observing the cold plasma in the Earth's magnetosphere with the EMMA network*, 2018, *Ann. of Geop.*
- S. J. Wharton, D. M. Wright, T. K. Yeoman, M. K. James, J. K. Sandhu, *Cross-phase determination of ultralow frequency wave harmonic frequencies and their associated plasma mass density distributions*, 2018, *AGU JGR*
- A.V. Streltsov and E.V. Mishin, On the existence of ionospheric feedback instability in the Earth's magnetosphereionosphere system, 2018, AGU JGR