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Study framework

• Present a method for estimating the critical Reynolds number
for bypass transition in canonical internal wall-bounded
flows: Plane Couette (PC), Plane Poiseuille (PP) and Pipe
Flow (PF).

• Based on the integral of the mean-momentum transport
equation: the mean-moment turbulent flux as a function
of centerline and friction velocities and Kármán number.

• Critical Reynolds numbers can be estimated with the data
from mean velocity profile in the turbulent regime.

• This allows predictions with good accuracy.

• Validated by direct numerical simulations (DNS) of a large
aspect-ratio plane channel flow.
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Background

Ten years after his seminal first paper on his famous
experiment (Reynolds, 1883)I J ,
• Reynolds (1895), by introducing the decomposition into mean

and fluctuating fields in the Navier-Stokes equations,
• he attempted obtaining a criterion for the laminar-turbulent

transition in plane channel flow.I

The Reynolds decomposition has been used since
• in statistical turbulence analysis in general
• or for stability studies around a base profile in particular.

But until now Reynolds-Averaged Navier-Stokes (RANS)
équations have failed to provide any quantitative or qualitative
information related to the sub-critical onset of turbulence.
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Background

• Although many advances have been made in understanding
how turbulence in wall-bounded flows occurs,
no progress has been made in connecting this transition to
high Reynolds numbers fully-developed turbulent
regime.(Barkley et al., 2015) and vice versa

• This study presents a method based on an exact relationship
provided by bulk averaging of the Reynolds shear-stress
obtained by integrating the RANS equations,I

• namely, the evolution of the mean-momentum turbulent flux
in canonical internal wall-bounded flows.
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Background

With regard to the critical Reynolds number of the aforementioned
flows, most of the studies agree on the following values:

RτC R0C RbC Refs

(PC) 18 330− 337 330− 337 Bottin et al. (1998), Duguet et al. (2010)

(PP) 36 660 880 Xiong et al. (2015), Paranjape (2019)

(PF) 45− 54 2020− 2900 2020− 2900 Avila et al. (2011), Eckhardt (2018)

IManneville (2015)

Rτ = h(orR)uτ

ν
being the Kármán number,

R0 = h(orR)UC
ν

the Reynolds number based on the centerline
velocity,
Rb = 2h(orD)Ub

ν
the bulk Reynolds number.
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Background

Note that in pipe flow

• It is difficult to know what the exact value of the critical
Reynolds is because of extremely long equilibration times
encountered and explain the wide scatter of the values of the
critical point reported over the last 130 years (Mukund & Hof,
2018).

• The characteristic mean lifetime of the disturbances increases
rapidly with Reynolds number and becomes inaccessibly large
for Reynolds numbers exceeding about 2250 (Faisst &
Eckhardt, 2004).

• However, as suggested by Mellibovsky et al. (2009) and
Barkley et al. (2015), the critical values of the bulk Reynolds
number are in the interval [2200, 2700], more limited than the
one indicated in the previous table.
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Notations

In what follows:

• The primed quantities correspond to fluctuations around the mean
with u′ and v ′ being the streamwise and wall-normal fluctuating
velocities, respectively.

• The over-bar represents the one-point statistical averaged quantities.

• The brackets denote their space average (1D or 2D).

• The superscript (+) indicates scaling with inner variables, i.e., ν the
kinematic viscosity and uτ the friction velocity defined from the wall
viscous shear stress τw as uτ =

√
τw/ρ, where ρ is the fluid

density.

• Rτ is the Kármán number based on the friction velocity and the
channel half-width h for plane Couette and plane Poiseuille flows
and on the pipe radius R.



Notation and conventions

Plane Couette flow setup

−h

+h

-
6

~x

~y

O

-

�

+~Uw

−~Uw

upper wall

bottom wall�
�
�
�
�
�

Plane Poiseuille setup

��
�
��

��
�
��
�

��
�
��
���

�
��
�

-

6

��* ~x

~y
~z

6

?
2Ly = 2h

��
�
��
�*����

���
Lz

-� Lx

-
6
��*~u
~v

~w



Notation and conventions

Pipe flow
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Equations

The bulk-averaging of the mean streamwise momentum equation for

statistically steady and 2D flow,i.e., −u′v ′+ + dU+

dy+ = y
h leads to the

following relations for the mean turbulent momentum flux over the gap
2h between the two moving wall, the half channel-width h, the pipe
cross-section or the pipe radius:

−
〈
u′v ′+

〉2h
PC

= 1−
U

+

W

Rτ

UW the algebraic mean of wall velocities

−
〈
u′v ′+

〉h

PP
=

1

2

(
1− 2

U
+

C

Rτ

)
UC the mean centerline velocity

−
〈
u′v ′+

〉S

PF
=

2

3

(
1− 3

U
+

R

Rτ

)
UR the radius-averaged mean velocity

−
〈
u′v ′+

〉R

PF
=

1

2

(
1− 2

U
+

B

Rτ

)
UB the bulk mean velocity
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Equations

These relations can be written in a generic manner:

−
〈
u′v ′+

〉
= α

(
1− β

U+
0

Rτ

)
, with

• α the first coefficient in the right-hand members,

• U0 being the characteristic velocity and U0c its laminar value.

• β the laminar value of the ratio Rτ/U+
0 ,i.e., β = Rτc/U+

0c
flow type α β

PC 1 1
PP&PFR 1/2 2
PFS 2/3 3
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Conjecture

It is clear that this relation is verified in fully developed turbulent
flows and also at the critical Kármán number at which the
turbulence vanishes,i.e.,

〈
u′v ′+

〉
= 0,

when the product βU+
0 is equal to Rτ .

A question:

Could it be used to predict the critical values of table 1?

The answer is YES as it will be shown in the following.
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DNS datasets

DNS datasets used in this study:

Ref. Rτ

Pirozzoli et al. (2014) 170, 258, 509, 989
PC Avsarkisov et al. (2014) 131, 177, 243, 553

Lee & Moser (2018) 93, 219, 501
Hoyas & Jiménez (2006) 186, 546, 933, 2004
Laadhari (2007) 72, 90, 120, 160, 180, 235, 395, 588, 1000

PP Bernardini et al. (2014) 183, 550, 998, 2021, 4079
Lee & Moser (2015) 182, 235, 543, 1000, 1994, 5186
Yamamoto & Tsuji (2018) 996, 1993, 3982
Wu & Moin (2008) 181, 684, 1142
El-Khoury et al. (2013) 181, 361, 550

PF Chin et al. (2014) 171, 500, 2003
Bauer et al. (2017) 1500
Pirozzoli et al. (2021) 180, 495, 1136, 1976, 3028, 6019
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DNS datasets

New DNS of plane Poiseuille flow

• New DNS in large aspect-ratio rectangular duct are performed with
a pseudo-spectral code (Buffat et al., 2011).

• The computational domain has a size of Lx × 2h × Lz , where
streamwise dimension Lx and spanwize dimension Lz are typically
500h and 250h, respectively.

• The resolution of the simulations is 2304× 129× 2304 grid points.

• The Kármán number is in the range 36 6 Rτ 6 72.

• The numerical experiments start from a fully developed turbulent
flow and the Reynolds number is stepwisely decreased,

• after every step the statistics are computed over a statistically
steady state.
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Plane Poiseuille flow
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Results

Plane Poiseuille flow

This figure shows that

• The laminar regime is reached at point C where 2U
+

C = Rτ ⇒ the
critical Kármán value RτC = 36.

• The critical value 2U
+

CC
is also reached at the turbulent point D

with RτD = 174,

• and at another point located between the previous ones.

• Near the point C the centerline velocity is well described by

U
+

C = 12.57

(
1−

Rτ

Rτc

)
+

Rτ

2
(2)

for 36 6 Rτ 6 48 with a relative departure (RD) in the range ±1%
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Results
Plane Poiseuille flow

• For Rτ > RτD it is well described by the logarithmic law

U
+

C = 2.5 ln Rτ + 5.25 (Laadhari, 2019)

with a RD in the range ±1%.

• Then U
+

C =
1

κ
ln

(
Rτ

A

)
=

1

κ
ln

(
RτD

A

)
+

1

κ
ln

(
Rτ

RτD

)

with κ = 0.4 the von Kármán constant, A = 0.122 and RτD = 174.

• Since U
+

CD
= U

+

CC
=

RτC

2
=

1

κ
ln

(
RτD

A

)

⇒ U
+

C =
RτC

2
+

1

κ
ln

(
Rτ

RτD

)
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Results

Plane Poiseuille flow

et voilà

−
〈
u′v ′+

〉h

PP
=

1

2

[
1−

RτC

Rτ
−

2

κRτ
ln

(
Rτ

RτD

)]
(3)

where the only unknown is RτC .

• Then, with Rτ = RτD , RτC = 174× (1− 2× 0.396) = 36.2

• The fitting to this relation of the PP DNS dataset leads to
the critical Kármán number RτC = 36.3

• 1% higher than the value obtained from the DNS.
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Results

Plane Poiseuille flow

• Since
1

κRτ
ln

(
Rτ

RτD

)
6 0.005,

• then relation (3) can be limited to

〈
u′v ′+

〉h

PP
=

1

2

(
1−

RτC

Rτ

)
(4)

• and leads to the same critical Kármán number RτC = 36.3.

• and this, even if the points below RτD = 174 do not follow
this law. I J
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Results
Is this the case for other flows?

I The same behaviors are observed, namely

• The product βU+
0 decreases with Rτ lower than the critical

value of each flow represented by the horizontal lines passing
through C and D,with

βU+
0C

= βU+
0D

= RτC .

• It follows a logarithmic law beyond RτD , specific to each flow,
with RD in the range ±1%.

• Equation (3) therefore applies to the three flows:

−
〈
u′v ′+

〉
= α

[
1−

RτC

Rτ
−

β

κRτ
ln

(
Rτ

RτD

)]
. (5)
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Results

Is this the case for other flows?

I The same behaviors are observed, namely

• The product βU+
0 decreases with Rτ lower than the critical

value of each flow represented by the horizontal lines passing
through C and D, with

βU+
0C

= βU+
0D

= RτC .

• It follows a logarithmic law beyond RτD , specific to each flow,
with RD in the range ±1%.

• Equation (3) therefore applies to the three flows:

−
〈
u′v ′+

〉
= α

[
1−

RτC

Rτ
−
��
���

���XXXXXXXX

β

κRτ
ln

(
Rτ

RτD

)]
. (6)
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Results

For the three flows

I This figure shows the evolution as a function of the Kármán number of
the bulk-averaged Reynolds shear-stress for the three flows. The critical
Kármán numbers are obtained by fitting the data to the simplified
function

−
〈
u′v ′+

〉
= α

(
1−

RτC

Rτ

)
.

Flow type RτC R0C RbC RτD A
PC 18.3 337 337 265 0.17
PP 36.3 659 878 174 0.122
PFS 50.3 2530 2530 222 0.27
PFR 40 1600 2133 1423 0.478
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Conclusion

• In conclusion, an answer is provided to the question that
Reynolds asked one hundred and twenty-five years ago: Is it
possible to obtain a criterion on the critical Reynolds number
of the onset of turbulence from the RANS equations?

• The answer is yes, this criterion is provided by the evolution of
the bulk-averaged mean turbulent momentum flux as a
function of the Kármán number.

• The critical numbers for canonical internal wall bounded flows
are in good agreement with the results available in the
literature and listed in table 1.
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Thank you, do you have any
questions?

Visualisations (Lx = 225h, Lz = 125h) - Rb = 760I
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