Dynamics and collisions of anisotropic particles settling in turbulence: application to cloud microphysics

Aurore Naso

Laboratoire de **M**écanique des **F**luides et d'**A**coustique CNRS, École Centrale de Lyon, Université de Lyon, INSA de Lyon

Alain Pumir, Jennifer Jucha, Muhammad Zubair Sheikh, Facundo Cabrera, Mickael Bourgoin, Nicolas Plihon (Laboratoire de Physique, ENS Lyon) Bernhard Mehlig, Kristian Gustavsson (Gothenburg University, Sweden) Emmanuel Lévêque (LMFA)

ASTROFLU V – 7/12/2021

Particles in turbulence (solid inclusions, drops, bubbles)

Lagrangian description of particles motion by a force balance:

$$
m_p \frac{dV}{dt} = m_p g + m_f \left(\frac{DU}{Dt} - g\right) + F_P
$$

 $\mathbf{F}_{\mathbf{P}}$ (force due to the particle) = ???

Basset-Boussinesq-Oseen equation (spherical solid particle)

Boussinesq , C. R. Acad. Sci. Paris 1885; Basset,1888 (revisited by *Gatignol, J. Mech. Theor. Appl. 1983; Maxey & Riley, PoF 1983*)

$$
m_p \frac{d\mathbf{v}_p}{dt} = m_f \frac{D\mathbf{u}}{Dt} + 6\pi r \mu_f (\mathbf{u} - \mathbf{v}_p) + \frac{1}{2} m_f \left(\frac{D\mathbf{u}}{Dt} - \frac{d\mathbf{v}_p}{dt}\right)
$$

$$
+ 6r^2 (\pi \mu_f \rho_f)^{1/2} \int_0^t \frac{d(\mathbf{u} - \mathbf{v}_p)/d\tau}{(t - \tau)^{1/2}} d\tau + (m_p - m_f) \mathbf{g}
$$

= Fluid acceleration + Stokes drag + Added mass + History force + Buoyancy

Expression derived assuming a Stokes flow at the particle scale: $Re_p = 2r|u-v|/v \ll 1$!!!

Turbulent transport of small (d < h**) inclusions**

In the limit of small, spherical, very dense particles, $\rho_p / \rho_f \gg 1$

(e.g., sand in air, water droplets in air, …)

$$
m_p \frac{d\mathbf{v}_p}{dt} = 6\pi r \mu_f (\mathbf{u} - \mathbf{v}_p) + m_p \mathbf{g} \qquad \longrightarrow
$$

$$
\begin{pmatrix}\n\frac{1}{2} & \frac{1}{2} & \
$$

Ireland & Collins

$$
\frac{d\mathbf{v}'_p}{dt} = \frac{\mathbf{u}' - \mathbf{v}'_p}{St} + \mathbf{g}'
$$

$$
St = \frac{2r^2}{9\nu\tau_{\eta}} \frac{\rho_p}{\rho_f} = \tau_{\text{p}} / \tau_{\eta}
$$

Stokes number

- St<<1: particle ~ fluid tracer
- St ↑: particle inertia ↑

Ice particles in cold clouds

Settling, orientation, collisions and aggregation of particles in cold clouds

- Ice crystals orientation
	- \rightarrow EM waves (light) reflexion, albedo

See also *Bréon & Dubrulle, JAS 2004*.

https://www.atoptics.co.uk/halo/lpil.htm

• Collision and aggregation of ice crystals \rightarrow formation of graupels

Electron and confocal microscopy laboratory, **US Agriculture Research Center**

Purpose of the study

• Determination of the crystals orientation and settling velocity, and of their collision rate, in turbulent conditions and with gravity. Direct numerical simulation of an idealized system.

• Assume that the crystal is a thin oblate ellipsoid of revolution (spheroid): $c \ll b = a$.

- Small (a < η), heavy ($\rho_p \gg \rho_f$) and spheroidal particle.
- Equation of motion ? Force and torque acting on the spheroid ?

Equations of motion of the spheroids: the role of fluid inertia

Equations of motion of the spheroids

• Translational and rotational dynamics of spheroidal particles in turbulence: For particles \neq fluid tracers, need to write equations of motion

> m_p dv/dt = **hydrodynamic force** + buoyancy I^p dw/dt = **hydrodynamic torque**

• Using Stokes approximation: hydrodynamic force = Stokes force hydrodynamic torque = Jeffery's torque

$$
\text{For a spherical object:} \qquad \mathbf{F}_{Stokes} = 6\pi r \mu_f (\mathbf{u} - \mathbf{v}_p)
$$

First effect of fluid inertia:

$$
\mathbf{F}_{Oseen} = \mathbf{F}_{Stokes} \times \left(1 + \frac{3Re_p}{16}\right) \sim \mathbf{F}_{Stokes} \text{ if } Re_p \ll 1 \quad \text{ (in practice if } r < \eta\text{)}
$$

Translational motion (Stokes)

$$
\frac{d\mathbf{r}_C}{dt} = \mathbf{v}_C,
$$
\n
$$
\frac{d\mathbf{v}_C}{dt} = \frac{v\rho_f}{m_C} \mathbf{R}^{-1} \hat{\mathbf{K}} \mathbf{R} \cdot [\mathbf{u}(\mathbf{r}_C, t) - \mathbf{v}_C] + \mathbf{g}
$$

- $\hat{\bm{K}}$: anisotropic resistance tensor, expressed in the eigenframe of the particle
- R : rotation matrix (laboratory frame \rightarrow particle eigenframe)
- **u**: fluid velocity **v**_C: particle velocity

Rotational motion (Stokes)

• **Angular momentum:** *(Jeffery, 1922)*

$$
\frac{d}{dt}\begin{pmatrix} \Omega_x \\ \Omega_y \\ \Omega_z \end{pmatrix} = \begin{pmatrix} \Omega_y \Omega_z \frac{\beta^2 - 1}{1 + \beta^2} \\ \Omega_z \Omega_x \frac{1 - \beta^2}{1 + \beta^2} \\ 0 \end{pmatrix} + 20 \frac{\rho_f}{\rho_p} \frac{\nu}{a^2} \begin{pmatrix} \frac{1}{\alpha_0 + \beta^2 y_0} & 0 & 0 \\ 0 & \frac{1}{\alpha_0 + \beta^2 y_0} & 0 \\ 0 & 0 & \frac{1}{2\alpha_0} \end{pmatrix} \begin{pmatrix} \frac{1 - \beta^2}{1 + \beta^2} \hat{S}_{yz} + (\hat{\Omega}_{zy} - \Omega_x) \\ \frac{\beta^2 - 1}{1 + \beta^2} \hat{S}_{xz} + (\hat{\Omega}_{xz} - \Omega_y) \\ (\hat{\Omega}_{yx} - \Omega_z) \end{pmatrix}
$$

 Ω : angular velocity of the particle (in its reference frame !)

 $A_{ij} = \partial_i u_i$ $\hat{\mathbf{A}} = \mathbf{R} \mathbf{A} \mathbf{R}^{-1},$ $\hat{\mathbf{S}} = \frac{1}{2}(\hat{\mathbf{A}} + \hat{\mathbf{A}}^t),$ $\hat{\mathbf{\Omega}} = \frac{1}{2}(\hat{\mathbf{A}} - \hat{\mathbf{A}}^t)$

• **Orientation of the spheroid:**

 $dR/dt = \Omega$. **R**

Orientation statistics

- $n =$ normal vector to the axisymmetry plane of the crystal;
- $g = -g e_z (e_z)$ points upwards).

Settling of spheroids in a turbulent flow: orientation distribution calculated numerically using **Stokes torque**

• Integration of the resulting set of equations for particles suspended in a turbulent flow (*Gustavsson et al, 2014; Siewert et al, 2014a,b; Gustavsson et al, 2017; Jucha et al, 2018; Naso et al, 2018*):

If W_s (settling velocity) > U₀ (fluid velocity), the orientation distribution is biased ("vertical"):

First effect of fluid inertia on the rotational motion of settling spheroids

- **Experimental results:**
	- * *Lopez & Guazzelli, PRF 2017*: rods in a 2D laminar flow \rightarrow "horizontal" settling
	- * *Kramel, PhD 2017*: rods in turbulence \rightarrow "horizontal" settling
	- * *Roy et al, JFM 2019*; *Cabrera et al, 2021*: rods in quiescent fluid \rightarrow "horizontal" settling

g

Results opposite to those obtained by DNS in turbulent flows using Stokes approximation !

• Fluid inertia correction on rotational motion of spheroids recently derived for arbitrary aspect ratios (*Dabade et al, JFM 2015*).

Problem: fluid-inertia torque ~ Stokes torque !!!

This inertial correction \rightarrow "horizontal" settling.

• Determine the conditions under which fluid inertia can be neglected for the angular dynamics of spheroids settling in turbulence.

Angular motion of spheroids

• NB: Fluid inertia can also induce corrections due to shear (*Candelier, Mehlig & Magnaudet, JFM 2019*) and unsteadiness.

-
- Estimate the ratio $||\hat{\mathbf{T}}_I|/|\hat{\mathbf{T}}_{St}||$.
	- * $|\mathbf{T}_I|/|\mathbf{T}_{St}|\ll 1$: Stokes expected to dominate ("vertical" settling if W_s > U $_\mathrm{0}$)
	- * $|\mathbf{T}_I|/|\mathbf{T}_{St}|\gg~1$ inertia expected to dominate ("horizontal" settling if W_{s} > U $_{\mathrm{0}}$)

Evaluation of the ratio $|\mathbf{T}_{St}|/|\mathbf{T}_I|$

• For very flat disks (aspect ratio $\beta \ll 1$) and for thin rods ($5 \le \beta \le 100$), it can be shown that:

$$
\hat{\mathbf{T}}_I || / |\hat{\mathbf{T}}_{St}| \sim \left| \mathcal{R} \equiv \left(\frac{W_s}{U_0} \right)^2 Re_f^{1/2} \right| \qquad Re
$$

 $e_f = U_0 L / \nu$: large scale Reynolds number of the flow

- Therefore, in the high Re_f regime, the fluid-inertia torque can be neglected (i.e., $\mathscr R$ can be small) only if W_s/U_0 is small
	- \rightarrow orientation distribution nearly uniform
- The Stokes contribution can be neglected ($\mathscr{R} \gg 1$) simultaneously with a large ratio W_s/U_0 \rightarrow biased "horizontal" distribution
- **Therefore the orientation bias obtained in numerical works which neglect the fluid-inertia** torque (biased "vertical" distribution) cannot be observed at large Re_f !!!

Sheikh, Gustavsson, Lopez, Lévêque, Mehlig, Pumir & Naso, JFM 2020

Numerical results in homogeneous and isotropic turbulence

- Transition from a uniform to a biased "horizontal" distribution observed at increasing $\mathscr R$.
- Biased "vertical" distribution never observed.
- Analysis seems to be valid for any β .

Settling and collisions

of ice crystals

Settling, orientation and collisions of ice crystals: numerical setup

• Generation of an idealized stationary, homogeneous and isotropic turbulent flow in a cubic box with periodic boundary conditions (pseudo-spectral method).

$$
\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\frac{\nabla p}{\rho_f} + \nu \nabla^2 \mathbf{u} + \mathbf{f},
$$

$$
\nabla \cdot \mathbf{u} = 0,
$$

• 3 values of R_λ (or ε) considered:

Physical parameters

• Simulations designed for representing at best realistic situations in cloud conditions. Physical parameters at $T = -20$ °C (*Pruppacher & Klett, 1997*).

• Parameters common to all runs:

TABLE 1. Values of the physical parameters common to all runs. The fluid is moist air, whose volumetric mass, kinematic and dynamic viscosities are ρ_f , ν and μ , respectively. The density of the water droplets is ρ_l . The ellipsoidal ice crystals have a volumetric mass ρ_i and a semi-major axis a. The gravitational acceleration is denoted g.

Physical parameters

w or w/o gravity.

Crystal settling: orientation statistics

Parameter space for the orientation distribution

Settling velocity conditioned on orientation

Two particles very close to each other may have a significant velocity difference, provided that they have different orientations \rightarrow consequences for the collision rate…

Collision kernel

$$
N_c = \frac{1}{2}K \times \frac{N^2}{V} \times T
$$

 N_c : number of collisions. $K:$ collision kernel. $N:$ number of particles.

 $V:$ volume of the domain.

 $T:$ simulation time.

Pumir & Wilkinson, ARCMP 2016

- Without gravity, K increases with β and ϵ (particle inertia), \sim spheres.
- Behavior less trivial in the presence of gravity.

Collision mechanisms for settling anisotropic particles

Turbulence: tracer particles brought together by velocity gradients.

Differential settling: faster spheroids fall on slower ones. Particle inertia: particles from different locations collide due to the « sling effect ».

Saffman & Turner, JFM 1956

Jucha et al, PRF 2018

Falkovich & Pumir, JAS 2007

Collision kernel

 $\varepsilon = 1$ cm²/s³; Re_{λ} = 56 (St < 0.04)

• Saffman-Turner (K ~ 3.10⁻⁵ cm³/s; Δν_r ~ a / τ_η) for β ≥ 0.01.

• When $g \neq 0$, differential settling for $\beta = 0.005$.

Collision kernel

 $\varepsilon = 246 \text{ cm}^2/\text{s}^3$; Re_{λ} = 150 (St = 0.1-0.6)

- Saffman-Turner ($\Delta v_r \sim a / \tau_\eta$) for $\beta = 0.005$.
	- Inertial effects (St \sim 0.6) for $\beta \ge 0.01$.

Collision regimes in the (Sv, St) plane

Summary - Discussion

Take-home message (rotational motion of settling spheroids):

- In a turbulent flow, heavy spheroids can only settle either with a random orientation or preferentially horizontally. Neglecting the fluid-inertia torque may lead to wrong results !
- In laminar flows (not shown here), the three orientation regimes can be observed (uniform distribution, "vertical", "horizontal"). The limit $Re_f \rightarrow 0$ requires some care.
- Our estimates were derived for very flat disks (aspect ratio $\beta \ll 1$) and for thin rods $(5 \leq \beta \leq 100)$, but our numerical results show that they are also relevant for moderate values of β .

Take-home message (orientation, settling and collisions of ice crystals in clouds):

- Our results improve the predictions of orientation fluctuations of earlier works (*Cho et al, J. Atmos. Soc. 1981*; *Klett, J. Atmos. Sci. 1995*), and are consistent with real observations.
- The settling velocity of ice-crystals strongly depends on their orientation.
- The resulting differential settling can play a crucial role in the collisions process. Collisions driven by three mechanisms: fluid velocity gradients, differential settling, effects of particle inertia.

Limitations of the present approach:

- "One-way coupling".
- "Ghost collision" approximation.
- Simplified crystal geometry, homogeneous mass density.
- Equations of motion valid for small Re_p. Effects of shear and unsteadiness neglected.

Perspectives:

- Prolate spheroids ($-10\,^{\circ}\text{C} \lesssim T \lesssim -5\,^{\circ}\text{C}$).
- Investigating further the collision mechanisms when particle inertia is dominant.
- Collisions between ice crystals and supercooled water droplets coexisting in mixed phase clouds.

