

cea

Study of the ablation of a solid wall by a liquid jet ASTROFLU V Lyon 7-8 dec 2021

PhD Students Alexandre LECOANET (2017-2021), Antoine Avrit (2020-?)

DE LA RECHERCHE À L'INDUSTRIE

LEMTA: Michel GRADECK, <u>Nicolas RIMBERT</u> CEA: Frédéric PAYOT, Nathalie MARIE

IRESNE | DTN | SMTA | LEAG

Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone

DE LA RECHERCHE À L'INDUSTRIE

General context / Introduction

IRESNE | DTN | SMTA | LEAG

Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone

Commissariat à l'énergie atomique et aux énergies alternatives Document propriété du CFA – Reproduction et diffusion externes qu CFA soumises à l'autorisation de l'émetteur IRESNE | DTN | SMTA | LEAG

3

Transfer characterization Cavity shape modelling Conclusion & future work

l'autorisation de l'émetteur

Transfer characterization Cavity shape modelling Conclusion & future work

Academic context: Jet spreading - laminar jets Watson (1964) + Lienhard (2006)

ation de l'émetteur

6

Institut de recherche sur les systèmes i

Transfer characterization Cavity shape modelling Conclusion & future work

Academic context: heat transfer - turbulent jets Stevens et al. (1991)
+ Lienhard et al. (2006)

Nu =

- SFR: Turbulent jets
- Flow laminarization at stagnation Tong (2003)
- Two regimes Stevens et al. (1991) + Lienhard (2006):
 - Laminar: Nu/Nu_{stag} independent of Re
 - Turbulent: Nu/Nu_{stag} depends on Re
- Transition:
 - Induced by jet surface oscillations
 - closer for turbulent jets
 - independent of *Re*
 - *h*↑

Dimensionless numbers

Transfer characterization Cavity shape modelling Conclusion & future work

8

Thermal

Mechanical Reynolds Inertia vs. viscosity $Re = \frac{\rho_j D_j V_j}{\mu_j}$ Froude Inertia vs. gravity $Fr_j = \frac{V_j}{\sqrt{gD_j}}$ Weber Inertia vs. surface tension $We = \frac{\rho_j V_j^2 D_j}{\sigma_i}$

Nusselt Convective vs. conductive transfer $Nu = \frac{h D_j}{k_j}$ Melting number (Stefan) Heat bring by jet vs. needed to melt $B = \frac{C_{p,j}(T_j - T_{s,f})}{L + C_{p,s}(T_{s,f} - T_{s,0})}$ Stanton Convective transfer vs. inlet heat flow $St = \frac{n}{\rho_i C_{p,i} V_i}$ Prandtl Compares mechanical / thermal BL growth $Pr = \frac{\mu_j C_{p,j}}{k}$ IRESNE | DTN | SMTA | LEAG Institut de recherche sur les systèmes nu

DE LA RECHERCHE À L'INDUSTRIE

Experimental setup: HAnSoLO Hot AblatioN of a SOlid by a Liquid - Observations

IRESNE | DTN | SMTA | LEAG

Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone

Transfer characterization Cavity shape modelling Conclusion & future work

- System studied: Water / Transparent ice
- Pros:
 - Solid / Jet: same nature (no crust)
 - SafeCost effective
- Large number of experiments
- Real-time visualizations
- Cons:
 - Simulant not prototypical
 - No undercooling (cracks)

Transfer characterization Cavity shape modelling Conclusion & future work

• The experiment

Test referenced: 612 $T_j = 31 \,^{\circ}C$ $V_j = 2.8 \, m/s$ $D_j = 5.8 \, mm$ $Re = 21 \, 000$ Pr = 5.30

Transfer characterization Cavity shape modelling Conclusion & future work

• Example of recordings IR

camera

Test referenced: 623 $T_j = 50 \ ^{\circ}C$ $V_j = 5.1 \ m/s$ $Re = 55 \ 000$ $D_j = 5.9 \ mm$ Pr = 3.55

Ice -Thermocouple HAnSoLO Jet diameter: 5.9 mm Re: 55 370 Jet temperature: 50 °C Pr: 3.55 Jet speed: 5.1 m/s cea emta

High speed

camera

Standard camera

IRESNE | DTN | SMTA | LEAG Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone

Commissariat à l'énergie atomique et aux énergies alternatives Document propriété du CEA - Reproduction et diffusion externes au CEA soumises à l'autorisation de l'émetteur

Phenomenological analysis

Cea

DE LA RECHERCHE À L'INDUSTRIE

Context / introduction

AnSoLC

Phenomenological analysis

IRESNE | DTN | SMTA | LEAG

Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone

Transfer characterization Cavity shape modelling Conclusion & future work

Progression:

Shape not due to considered system

 $T_i = 30 \,^{\circ}C$ Pr = 5.38

 $V_j = 1.6 \ m/s \qquad T_s = 0 \ ^\circ C$

Transfer characterization Cavity shape modelling Conclusion & future work

Progression:

- Film surface temperature: film regime
- Temperature along segment crossing jet
- T independent of time
- $T \downarrow$ at fixed r/D_j
 - For $V_j > 2.5 m. s^{-1}$
- Independent of *Re*
 - Due to turbulence
 - Cf. Stevens et al. (1991)

623 $T_i = 50 \,^{\circ}C$ $V_i = 5.1 \, m/s$ $Re = 55\ 000$ Pr = 3.55615 $T_i = 30 \,^{\circ}C$ $V_i = 5.1 \, m/s$ $Re = 77\ 000$ Pr = 5.35634 $T_i = 71 \,^{\circ}C$ $V_i = 7.6 \, m/s$ $Re = 112\ 000$ Pr = 2.52

Transfer characterization Cavity shape modelling Conclusion & future work

Progression:

Commissariat à l'énergie atomique et aux énergies alternatives

IRESNE | DTN | SMTA | LEAG Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone

Transfers characterization

IRESNE | DTN | SMTA | LEAG

Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone

- Raw results example
- Film regime
 - Constant ablation velocity
 - $-V_f \uparrow \text{with } T_j \& V_j$
 - $-V_f \uparrow$ when $D_j \downarrow$
 - h & Nu from jump condition + Newton's law + constant V_f

$$h = \frac{V_f \rho_s [L + C_{p,s} (T_{s,f} - T_{s,0})]}{(T_j - T_{s,f})}$$

$$Nu_f = K Re^n Pr^m$$

- Behavior change in pool effect
 - Not linear=
 - − Potential V_f ↑

Commissariat à l'énergie atomique et aux énergies alternatives Document propriété du CEA – Reproduction et diffusion externes au CEA soumises à l'autorisation de l'émetteur

Transfer characterization

Cavity shape modelling Conclusion & future work

Transfer characterization

Cavity shape modelling Conclusion & future work **Progression**:

- Transition to pool effect
 - 1st measurements
 - Data well represented with $Z^* \& Fr_j$
 - Saito's et al. (1990) criterion does not work ($Z^* > 4$)
 - Our model:
 - Momentum balance on truncated cone

Cavity shape modelling

IRESNE | DTN | SMTA | LEAG

Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone

Transfer characterization Cavity shape modelling Conclusion & future work

• Link between cavity local angle (α) & local ablation velocity (V_f) – <u>FILM REGIME</u>

- Cavity maintains its shape : it unfolds
- Interface points move at constant velocity
- Cavity shape from melting velocity radial evolution
- Points displaced by melting along $-\vec{N}$

 $\alpha = \arccos$

Transfer characterization Cavity shape modelling Conclusion & future work

1 (–

- Modelling: Boundary layer growth
- Constant film temperature
 - IR measurements
 - Only h evolve with r

$$V_{f} = \frac{h(I_{film} - I_{s,f})}{\rho_{s} [L + C_{p,s} (T_{s,f} - T_{s,0})]}$$

m

- Evolution from scaling law without melting Lienhard (2006):
 - z evolution from α

$$Nu_{stag} = 0.745 \ Re^{1/2} Pr^{1/3} \qquad Nu = 0.632 \ Re^{1/2} Pr^{1/3} \sqrt{\frac{D_j}{r}}$$
$$\frac{V_f}{V_{f,imp}} = \frac{h}{h_{stag}} = \frac{Nu}{Nu_{stag}} \qquad \& \qquad z = \int_0^r \sqrt{\left(\frac{V_f}{V_{f,imp}}\right)^2 - 1 \ d\mathcal{L}}$$
Cavity shape prevision

Transfer characterization Cavity shape modelling Conclusion & future work

Modelling: Boundary layer growth (comparisons)

• At pool effect transition: $T_i = 50 \ ^\circ C$, $D_N = 6.0 \ mm$

$V_j = 1.2 \ m/s$	$V_j = 2.3 \ m/s$	$V_j = 5.1 m/s$
$Re = 13\ 000$	$Re = 24\ 000$	$Re = 55\ 000$
Pr = 3.70	Pr = 3.55	Pr = 3.55

Calculated shape

Transfer characterization Cavity shape modelling Conclusion & future work

Progression:

v g

Transfer characterization Cavity shape modelling Conclusion & future work

Progression:

- Modelling: constant h Comparison
- Model describes well global cavity shape with no laminar part
- Interesting estimates of cavity width

Conclusion and Current Work (Antoine Avrit)

IRESNE | DTN | SMTA | LEAG

Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone