Testing wave turbulence theory for Gross-Pitaevskii system

Ying $Zhu¹$ Boris Semisalov ^{2,3,4} Giorgio Krstulovic³ Sergey Nazarenko ¹

¹Université Côte d'Azur, CNRS, Institut de Physique de Nice - INPHYNI, France

²Novosibirsk State University, Russia

³Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, France

⁴Sobolev Institute of Mathematics SB RAS, Russia

December 07-08, 2021

Gross-Pitaevskii equation (GPE)

Nonlinear Schrödinger equation (NLSE)

$$
i\frac{\partial \psi(\mathbf{r},t)}{\partial t} + \nabla^2 \psi(\mathbf{r},t) + s |\psi(\mathbf{r},t)|^2 \psi(\mathbf{r},t) = 0
$$

 $\psi(r, t)$, complex scalar function

$$
r \in \mathcal{R}^d, d \leq 3, \text{ time } t \in \mathcal{R}.
$$

 $s = 1$ and $s = -1$ correspond to the focusing or defocusing GPE respectively.

Physical systems described by Gross-Pitaevskii equation

- **Bose-Einstein Condensates (BECs)** [Pitaevskii-book]
- nonlinear optical systems [Newell :1992il, DNPZ-bec]
- **cosmological evolution of early Universe [Zurek1996].**
- superfluid flows at almost zero temperatures [[Ba](#page-0-0)r[en](#page-2-0)[g](#page-0-0)[hi](#page-1-0)[0](#page-2-0)[1](#page-0-0)[-](#page-1-0)[p](#page-2-0)[r](#page-3-0)[oj](#page-0-0)[,](#page-1-0) [k](#page-2-0)[o](#page-3-0)[pl](#page-0-0)[ik\]](#page-34-0)

GPE for Bose-Einstein condensates

$$
i\frac{\partial \psi(\mathbf{r},t)}{\partial t} + \nabla^2 \psi(\mathbf{r},t) - |\psi(\mathbf{r},t)|^2 \psi(\mathbf{r},t) = 0
$$

3D $\psi(\mathbf{r}, t)$ wave function, *L*-periodic cube \mathbb{T}_L

- nonlinear wave system : random mutually interacting waves with a broadband spectrum
- additional terms : forcing, damping, potential
- conservation laws :
	- number of particles $N = \frac{1}{V} \int |\psi(\mathbf{r}, t)|^2 d\mathbf{r}$
	- energy $H = \frac{1}{V} \int [|\nabla \psi(\mathbf{r}, t)|^2 + \frac{1}{2} |\psi(\mathbf{r}, t)|^4] d\mathbf{r}$

condensate fraction : $C_0 =$ $|\langle \psi(\bm{r}, t)\rangle|^2$ $\frac{\partial \mathcal{L}(\mathbf{r},t)}{\partial N}$, $\psi(\mathbf{r},t) = \langle \psi(\mathbf{r},t) \rangle + \psi'(\mathbf{r},t)$

healing length : $\xi = \frac{1}{\sqrt{2}}$ N

つくい

Weak wave turbulence theory (WWTT)

statistical spectral theory

$$
\hat{\psi}_{\mathbf{k}} = \hat{\psi}(\mathbf{k}, t) = \frac{1}{V} \int_{\mathbb{T}_L} \psi(\mathbf{r}, t) e^{-i\mathbf{k} \cdot \mathbf{r}} d\mathbf{r}, \quad \psi(\mathbf{r}, t) = \sum_{\mathbf{k}} \hat{\psi}_{\mathbf{k}} e^{i\mathbf{k} \cdot \mathbf{r}}
$$

wave-action spectra :
$$
n_{\mathbf{k}}(t) = n(\mathbf{k}, t) = \left(\frac{L}{2\pi}\right)^3 \langle |\hat{\psi}_{\mathbf{k}}|^2 \rangle
$$

weak non-linearity; absent of condensation; four-wave system

- set time scale T to be intermediate between linear and non-linear scales
- use the random phase and amplitude (RPA) assuption (non-Gaussianity)
- **■** take large box limit $L \to \infty$, than the limit $T \to \infty$

Weak wave turbulence theory (WWTT)

wave-kinetic equation (WKE)

$$
\frac{d}{dt}n_{\mathbf{k}} = 4\pi \int \delta(\mathbf{k} + \mathbf{k}_1 - \mathbf{k}_2 - \mathbf{k}_3)\delta(\omega_{\mathbf{k}} + \omega_{\mathbf{k}_1} - \omega_{\mathbf{k}_2} - \omega_{\mathbf{k}_3})
$$
\n
$$
\left[n_{\mathbf{k}_1}n_{\mathbf{k}_2}n_{\mathbf{k}_3} + n_{\mathbf{k}}(n_{\mathbf{k}_2}n_{\mathbf{k}_3} - n_{\mathbf{k}_1}n_{\mathbf{k}_3} - n_{\mathbf{k}_1}n_{\mathbf{k}_2})\right]d\mathbf{k}_1 d\mathbf{k}_2 d\mathbf{k}_3,
$$

- assume that n_k is isotropic in k -space
- pass to the frequency variable : $n_{\bf k}(t) = n_{\omega}(t) = n(\omega, t)$, $\omega_{\bf k} = |\bf k|^2$

Weak wave turbulence theory (WWTT)

wave-kinetic equation (WKE) [Semikoz and Tkachev, 1995(PRL)]

$$
\frac{d}{dt}n_{\omega} = \frac{4\pi^3}{\sqrt{\omega}} \int S(\omega, \omega_1, \omega_2, \omega_3) \delta_{1\omega}^{23} n_{\omega} n_1 n_2 n_3
$$

$$
(n_{\omega}^{-1} + n_1^{-1} - n_2^{-1} - n_3^{-1}) d\omega_1 d\omega_2 d\omega_3
$$

$$
S(\omega, \omega_1, \omega_2, \omega_3) = \min(\sqrt{\omega}, \sqrt{\omega_1}, \sqrt{\omega_2}, \sqrt{\omega_3}), \omega = |\mathbf{k}|^2
$$

$$
\delta_{1\omega}^{23} = \delta(\omega + \omega_1 - \omega_2 - \omega_3)
$$

conservation law : $N = 2\pi \int_0^\infty \omega^{1/2} n \omega \, d\omega$, $H = 2\pi \int_0^\infty \omega^{3/2} n \omega \, d\omega$ $\Box \omega$ -space continuous, $L \to \infty$

thermodynamic equilibrium solutions : $n_{\omega} = \frac{T}{\omega}$ $\omega + \mu$

non-equilibrium stationary power-law, Kolmogorov-Zakharov (KZ) spectra $n_{\omega} = C \omega^{-x}$ direct cascade of energy : $x = 3/2$; inverse cascade of particles : $x = 7/6$

Motivation : testing wave turbulence theory

- temporal evolution [Zhu, Semisalov, Krstulovic, Nazarenko, 2021(arXiv :2111.14560)]
	- rigorous mathematical justification, $\delta \cdot T_{kin}$, $\delta \ll 1$ [Deng and Hani, 2021(arXiv :2106.0981)]
	- wave-action spectrum, probability density function (PDF)
- stationary solutions
	- direct cascade : experiments by [Navon et al., 2016(Nature)], mystery -1.5 law
	- **n** inverse cascade : verify self-similar solution obtained by WKE [Semisalov] et al., 2021(Communications in Nonlinear Science and Numerical Simulation)]
	- inverse cascade : achieve stationary solution, predict wave-action spectrum with flux
- self-similar solutions
	- second kind of self-similar solutions predicted by WWTT

Numerical method for the WKE

- collocation method, rational barycentric interpolations accounts for singularities, allows one to obtain highly-accurate results
- integration adapts to smoothness, exponential convergence [Semisalov et

Decomposition of the domain

 OQ

Numerical setup

 \blacksquare Initial 1D wave-action spectrum for GPE and WKE

$$
n^{1D}(k,0) = g_0 \exp\left(\frac{-(k-k_s)^2}{\sigma^2}\right)
$$

with $q_0 = 1, k_s = 22, \sigma = 2.5$ GPE : random initial phases

- Numerical methods of GPE :
	- integrated with a pseudo-spectral numerical method on cubic, triply-periodic domain
	- Exponential time differencing version of the Runge–Kutta scheme of fourth order (ETD4RK) is employed for time evolution

Evolution of 1D wave-action Spectrum for short time

Time evolution of $n^{\text{ID}}(k, t)$ for short time. $T_{kn i} = 15$

 \leftarrow

Evolution of 1D wave-action Spectrum for short time

centroids of $n^{1D}(k, t)$ and $E^{1D}(k, t)$ and their typical widths

$$
K_N(t) = \frac{1}{N_c(t)} \int_0^{k_{\text{cutoff}}} k n^{\text{1D}}(k, t) \text{d}k,
$$

\n
$$
\Delta_{K_N}(t) = \sqrt{\frac{1}{N_c(t)}} \int_0^{k_{\text{cutoff}}} (k - K_N)^2 n^{\text{1D}}(k, t) \text{d}k,
$$

\n
$$
K_E(t) = \frac{1}{H_c(t)} \int_0^{k_{\text{cutoff}}} k E^{\text{1D}}(k, t) \text{d}k,
$$

\n
$$
\Delta_{K_E}(t) = \sqrt{\frac{1}{H_c(t)}} \int_0^{k_{\text{cutoff}}} (k - K_E)^2 E^{\text{1D}}(k, t) \text{d}k.
$$

$$
E^{1D}(k,t) = k^2 n^{1D}(k,t)
$$

$$
N_c(t) = \int_0^{k_{\text{cutoff}}} n^{1D}(k,t) \, ds \, , H_c(t) = \int_0^{k_{\text{cutoff}}} E^{1D}(k,t) \, ds
$$

Evolution of 1D wave-action Spectrum for short time

Dynamics of th[e](#page-9-0) [c](#page-7-0)entroids of $n^m(k, t)$ $n^m(k, t)$ $n^m(k, t)$ [a](#page-18-0)nd $E^m(k, t)$ and th[eir](#page-10-0) [res](#page-12-0)[p](#page-8-0)ec[ti](#page-12-0)[v](#page-8-0)e t[y](#page-19-0)[pi](#page-6-0)ca[l](#page-19-0) [wi](#page-0-0)[dths](#page-34-0) for short time. [ERCOFTAC Workshop](#page-0-0) December 07-08, 2021 8 / 19

Verifying WT assumptions for GPE settings

Spatio-temporal spectra density of $\psi(r, t)$ over the time interval [12, 18].

∢ □

 OQ

Verifying WT assumptions for GPE settings

Frequency broadening $\delta(k)$ (blue points) vs. k obtained from the spatial-temporal spectral density over the time interval [12, 18]. $\omega(k) = k^2$, $\Delta \omega(k) = 2k\Delta k$

Evolution of 1D wave-action Spectrum for long time

Time evolution of $n^{\text{ID}}(k, t)$ for long time. $T_{kni} = 15$

Evolution of 1D wave-action Spectrum for long time

Dynamics of the centroids of $n^{\text{ID}}(k, t)$ and $E^{\text{ID}}(k, t)$ and their respective typical widths for long time. $2Q$

PDF and cumulants of wave-action

Theoretical prediction of PDF by [Choi et al., 2017(Journal of physics A)] :

$$
\mathcal{P}_J(t,s) = \frac{1}{\tilde{n}}e^{-\frac{s}{\tilde{n}} - a\tilde{n}}
$$

 $\tilde{n} = n(t) - Je^{-\int_0^t \gamma(t')dt'} I_0(2\sqrt{as})$, $J = n(0)$, $a = \frac{J_0}{\tilde{n}^2}$ $\frac{J}{\tilde{n}^2}e^{-\int_0^t \gamma(t')dt'}$ $I_0(x)$, zeroth modified Bessel function of the first kind

Time evolution of the normalized probabili[ty](#page-15-0) density f[un](#page-17-0)[c](#page-15-0)[ti](#page-16-0)[o](#page-19-0)[n](#page-19-0)[s](#page-8-0) $\tilde{P}_{J}(t, \tilde{s})$ $\tilde{P}_{J}(t, \tilde{s})$ $\tilde{P}_{J}(t, \tilde{s})$ o[f](#page-0-0) n_k [.](#page-34-0)

PDF and cumulants of wave-action

Cumulants : deviation from Gaussian distribution

$$
F^{(p)} = \frac{M^{(p)} - p! (M^{(1)})^p}{p! (M^{(1)})^p}, \quad M^{(p)} = \langle n_k^p \rangle \qquad p = 1, 2, 3, ...
$$

 $F^{(p)} = 0$, Gaussian distribution

Time evolution of the relative cumulants $F^{(p)}(t)$ of n_k .

 OQ

PDF and cumulants of wave-action

Motion of the front of relative PDF for different values of k .

 \leftarrow \Box \rightarrow

 OQ

 \leftarrow

- Non-equilibrium stationary power-law, $n^{\text{1D}}(k) \propto k^{-\alpha}$ direct cascade : $\alpha = -1$
	- Mystery -1.5 law for direct cascade in [Navon et al., 2016(Nature)]
	- log-correction by WWTT : $n^{\text{ID}}(k) \propto k^{-1} \ln^{-1/3}(\frac{k}{k_f}), k_f$ forcing scale
- **■** inverse cascade : $\alpha = -1/3$
	- \mathbf{r} dimension analysis : $n^{\text{ID}}(k) = ck^{-1/3} \zeta^{1/3}$, ζ flux of particles
	- prediction of the constant ϵ by WWTT

$$
N = 2\pi \int_0^\infty \omega^{1/2} n\omega \, d\omega, \frac{\partial(2\pi \omega^{1/2} n\omega)}{\partial t} = St_\omega
$$

$$
\frac{\partial(2\pi \omega^{1/2} n\omega)}{\partial t} + \frac{\partial \zeta_\omega}{\partial \omega} = 0, \zeta_\omega = \int_0^\omega St_\omega d\omega
$$

$$
n\omega = A\omega^\nu, St_\omega = 8\pi^4 A^3 \omega^{3\nu + 5/3} I(x), x = -7/2 - 3\nu
$$

$$
I(x) = \int S(1, q_1, q_2, q_3) \delta(1 + q_1 - q_2 - q_3) (q_1 q_2 q_3)^{-x/3 - 7/6} (1 + q_1^x - q_2^x - q_3^x) dq_1 dq_2 dq_3
$$

$$
\nu = -7/6, n\omega = \left(\frac{\zeta_0}{8\pi^4 I'(0)}\right)^{1/3} \omega^{-7/6}
$$

$$
c = 2\left(\frac{1}{\pi I'(0)}\right)^{1/3}, I'(0) \approx -3.19, c \approx -0.928
$$

Simulation results for direct cascade

Time evolution of wave-action spectra by GPE

∢ □

Simulation results for direct cascade

Stationary wave-action spectrum by GPE. healing length : $\xi = \frac{1}{\sqrt{N}}$

Simulation results for inverse cascade

Time evolution of wave-action spectra by GPE

 \leftarrow

Simulation results for inverse cascade

Fluxes of the stationary solution for different dissipation at low k by GPE.

 \leftarrow

Simulation results for inverse cascade

Stationary wave-action spectra. Comparison between GPE and theoretical prediction.

 \leftarrow

 OQ

Example of self-similar solution, free decay case.

←□

₿

 OQ

Example of self-similar solution, forcing case.

 \leftarrow

Suppose
$$
n_{\omega} = t^{-a} F(\eta)
$$
, $\eta = \frac{\omega}{t^b}$
substitute to WKE, $a - b = \frac{1}{2}$

 \blacksquare for free decay case, consider the conservation of energy $H=2\pi \int_{0}^{\infty}$ $\boldsymbol{0}$ $\omega^{3/2} n_{\omega} d\omega$, we get $a-\frac{5}{2}$ $\frac{5}{2}b = 0$

for forcing case, suppose $H \propto t$, we get $a - \frac{5}{2}$ $\frac{5}{2}b = -1$

transfer to k space, $n^{1D}(k,t) = t^{-\tilde{a}} f\left(\frac{k}{\tilde{a}}\right)$ $t^{\tilde{b}}$ \setminus for free decay case $\tilde{a} = 1/2$ and $\tilde{b} = 1/6$ for forcing case $\tilde{a} = 1/2$ and $\tilde{b} = 1/2$

Simulation results for free decay case.

Time evolution of the front of wave-action spectra.

∢ □

Simulation results for free decay case.

 \leftarrow

Simulation results for forcing case

Time evolution of the front of wave-action spectra. [Navon et al., 2019(Nature)]

∢ □

Simulation results for forcing case

 \leftarrow

₿

[Conclusions](#page-33-0)

Conclusions

- We correct the pre-factor of WKE
- The temporal evolution of GPE data is accurately predicted by the WKE, with no adjustable parameters
- For the first time, comparative analysis of PDF and cumulants for GPE and WKE has been done
- The characteristic times of wave-action spectra and PDF are of the same order
- We explain the mystery scaling of stationary direct cascade obtained by experiments
- We achieve the stationary scaling for inverse cascade and find out the flux constant for the first time
- The second kind of self-similar solutions are solved with WWTT, for both free decay case and forcing case

Thanks for your attention !

 \leftarrow

[ERCOFTAC Workshop](#page-0-0) December 07-08, 2021 19/19